Leta i den här bloggen

måndag 24 februari 2020

SARS virus hyödyntää isäntäkehon proteaaseja infektoidessaan solua . Olisiko antiproteaasista hyötyä?

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2773421/

. 2009; 4(11): e7870.
Published online 2009 Nov 17. doi: 10.1371/journal.pone.0007870
PMCID: PMC2773421
PMID: 19924243

Cleavage of the SARS Coronavirus Spike Glycoprotein by Airway Proteases Enhances Virus Entry into Human Bronchial Epithelial Cells In Vitro

Georges Snounou, Editor  Abstract
Background
Entry of enveloped viruses into host cells requires the activation of viral envelope glycoproteins through cleavage by either intracellular or extracellular proteases. In order to gain insight into the molecular basis of protease cleavage and its impact on the efficiency of viral entry, we investigated the susceptibility of a recombinant native full-length S-protein trimer (triSpike) of the severe acute respiratory syndrome coronavirus (SARS-CoV) to cleavage by various airway proteases.
Methodology/Principal Findings
Purified triSpike proteins were readily cleaved in vitro by three different airway proteases: trypsin, plasmin and TMPRSS11a. High Performance Liquid Chromatography (HPLC) and amino acid sequencing analyses identified two arginine residues (R667 and R797) as potential protease cleavage site(s). The effect of protease-dependent enhancement of SARS-CoV infection was demonstrated with ACE2 expressing human bronchial epithelial cells 16HBE. Airway proteases regulate the infectivity of SARS-CoV in a fashion dependent on previous receptor binding. The role of arginine residues was further shown with mutant constructs (R667A, R797A or R797AR667A). Mutation of R667 or R797 did not affect the expression of S-protein but resulted in a differential efficacy of pseudotyping into SARS-CoVpp. The R667A SARS-CoVpp mutant exhibited a lack of virus entry enhancement following protease treatment.
Conclusions/Significance
These results suggest that SARS S-protein is susceptible to airway protease cleavage and, furthermore, that protease mediated enhancement of virus entry depends on specific conformation of SARS S-protein upon ACE2 binding. These data have direct implications for the cell entry mechanism of SARS-CoV along the respiratory system and, furthermore expand the possibility of identifying potential therapeutic agents against SARS-CoV.

Introduction
Proteolytic cleavage of the viral envelope glycoprotein into a receptor binding and a fusogenic transmembrane subunit is important to regulate virus entry and infectivity . Previous studies showed that viral glycoprotein activation is mediated by secreted proteases recognizing either monobasic or multibasic cleavage sites . Cleavage of viral glycoprotein has been demonstrated in retrovirus, ortho and paramyxoviruses to regulate virus entry and fusion , , . The extracellular processing of the envelope glycoprotein has a major impact on the infectivity of virulent or avirulent strains of influenza viruses, Sendai virus and Newcastle disease virus , , . A typical example is influenza A virus, where virus-cell fusion activity is induced by post-translational proteolytic cleavage of the envelope glycoprotein that is mediated by trypsin-like protease in the bronchial epithelium and airway secretion . Several proteases such as tryptase clara, mini-plasmin, ectopic anionic trypsin, mast-cell tryptase and tryptase TC30, which have been isolated from airway epithelial, can selectivity cleave the consensus cleavage motif of human influenza A virus envelope glycoprotein , , , and determine the virus tropism and infectivity. Recent advance of human genome studies identified a large number of transmembrane serine protease (TMPRSS). Various TMPRSS members with known airway localization have been identified from the respiratory tract. TMPRSS11a, one of the newly identified members of type II transmembrane serine proteases, is expressed in upper respiratory tract (pharynx and trachea) (unpublished data). However, less is known about TMPRSS that activate pneumotropic virus under natural infection.
Although enhancement of virus infection has been demonstrated for bovine (BCoV) and rat (RCV) coronaviruses by treatment of cells with trypsin , , the precise role of trypsin during coronavirus infection is still unknown. Several members of coronavirus possess a protease cleavage site, which is essential for infectivity and virus-cell membrane fusion, and cleavage at these sites yields two non-covalently linked subunits S1 and S2 , . The N-terminal S1 subunit is responsible for receptor binding whereas the membrane-anchored S2 subunit is important for fusion between viral and cellular membranes. Evidence from mouse hepatitis virus (MHV) and BCoV suggested the importance of S protein cleavage into two non-covalently linked S1 and S2 subunits that remain on the virus envelope surface during virus maturation , . Uncleaved S protein is functional but cleavage may enhance cell fusion activity and/or virus infectivity , . Susceptibility of S protein to cleavage depends on virus strains and host cell types. Similar to group I coronaviruses, sequence analysis suggests that S protein from SARS-CoV is not expected to be cleaved since typical amino acid cleavage sites found in coronavirus group II and III (RRFRR, RRSRR, RSRR, RARS and RARR) are not located in the SARS S protein .
Recent findings have suggested the importance of trypsin treatment in activating SARS spike glycoprotein mediated cell-cell fusion . Syncytia formation was observed between SARS spike glycoprotein expressing 293T cells and VeroE6 cells after brief trypsin treatment ; trypsin has been shown to induce cleavage of monobasic cleavage site and activate influenza viruses in cell culture system , . It is not known whether the functionality of spike glycoproteins is dependent on the activity of trypsin inducing their proteolytic cleavage. Nothing is known about the role of proteases that cleave/modify SARS spike glycoprotein under natural infection.
Conformational reorganization of SARS spike glycoprotein has been demonstrated from cryo-electron microscopic analysis whereby structural transition of the spike glycoprotein has been observed when irradiated SARS-CoV virion binds to the virus receptor, angiotensin-converting enzyme (ACE2) . These experiments showed that receptor-binding and subsequent membrane fusion occur with different phases of structural re-arrangements. Possibly, the protease-modified SARS spike glycoprotein is de facto the glycoprotein responsible for virus entry. To address this possibility we have investigated whether cleavage has any significant effect on SARS-CoV entry into airway epithelial cells by using S-pseudotyped lentiviral vectors (SARS-CoVpp) encoding a luciferase reporter gene to mimic SARS-CoV entry. We observed that SARS-CoV spike glycoprotein can be efficiently cleaved by several airway proteases and that this processing enhances entry of SARS-CoVpp. Furthermore, we have identified the putative cleavage sites of airway proteases and, by site-directed mutagenesis, have determined the role of specific amino acid residue for proteolytic processing of the envelope glycoprotein, and for SARS-CoVpp entry into human airway epithelial cells (16HBE) in vitro. While this manuscript was still in progress, one of the two natural cleavage sites described here, at position 797, was reported in a separate independent study using only trypsin for cleavage . This study further supports and strengthens the demonstration of the critical role of receptor-dependent cleavage of spike protein by airway proteases, providing deeper insights into the exact mechanism of virus entry enhancement.

 Discussion..
Current studies have suggested that SARS-CoV enters and exits preferentially via the apical surface of the epithelium , and co-localization of airway proteases with SARS-CoV along the respiratory tract supports the positive feedback loop of virus infection in vivo. To conclude, we have found that cleavage of the receptor-bound spike glycoprotein by airway proteases enhances in vitro virus entry and fusion. Therefore, identification of reagents that are able to suppress in vivo activity of airway proteases might provide additional antiviral strategy against SARS-CoV infection , and possibly other viral respiratory infections such as human influenza A virus in the face of the current flu epidemic threat.

Muita artikkeleita:

Heurich A, Hofmann-Winkler H, Gierer S, Liepold T, Jahn O, Pöhlmann S.
J Virol. 2014 Jan;88(2):1293-307. doi: 10.1128/JVI.02202-13. Epub 2013 Nov 13.
The type II transmembrane serine proteases TMPRSS2 and HAT can cleave and activate the spike protein (S) of the severe acute respiratory syndrome coronavirus (SARS-CoV) for membrane fusion. In addition, these proteases cleave the viral receptor, the carboxypeptidase angiotensin-converting enzyme 2 (ACE2), and it was proposed that ACE2 cleavage augments viral infectivity. However, no mechanistic insights into this process were obtained and the relevance of ACE2 cleavage for SARS-CoV S protein (SARS-S) activation has not been determined. Here, we show that arginine and lysine residues within ACE2 amino acids 697 to 716 are essential for cleavage by TMPRSS2 and HAT and that ACE2 processing is required for augmentation of SARS-S-driven entry by these proteases. In contrast, ACE2 cleavage was dispensable for activation of the viral S protein. Expression of TMPRSS2 increased cellular uptake of soluble SARS-S, suggesting that protease-dependent augmentation of viral entry might be due to increased uptake of virions into target cells. Finally, TMPRSS2 was found to compete with the metalloprotease ADAM17 for ACE2 processing, but only cleavage by TMPRSS2 resulted in augmented SARS-S-driven entry. Collectively, our results in conjunction with those of previous studies indicate that TMPRSS2 and potentially related proteases promote SARS-CoV entry by two separate mechanisms: ACE2 cleavage, which might promote viral uptake, and SARS-S cleavage, which activates the S protein for membrane fusion. These observations have interesting implications for the development of novel therapeutics. In addition, they should spur efforts to determine whether receptor cleavage promotes entry of other coronaviruses, which use peptidases as entry receptors.Free PMC Article
2.
Haga S, Nagata N, Okamura T, Yamamoto N, Sata T, Yamamoto N, Sasazuki T, Ishizaka Y.
Antiviral Res. 2010 Mar;85(3):551-5. doi: 10.1016/j.antiviral.2009.12.001. Epub 2009 Dec 6.
Because outbreaks of severe acute respiratory syndrome coronavirus (SARS-CoV) might reemerge, identifying antiviral compounds is of key importance. Previously, we showed that the cellular factor TNF-alpha converting enzyme (TACE), activated by the spike protein of SARS-CoV (SARS-S protein), was positively involved in viral entry, implying that TACE is a possible target for developing antiviral compounds
To demonstrate this possibility, we here tested the effects of TACE inhibitors on viral entry. In vitro and in vivo data revealed that the TACE inhibitor TAPI-2 attenuated entry of both pseudotyped virus expressing the SARS-S protein in a lentiviral vector backbone and infectious SARS-CoV. TAPI-2 blocked both the SARS-S protein-induced shedding of angiotensin-converting enzyme 2 (ACE2), a receptor of SARS-CoV, and TNF-alpha production in lung tissues. Since the downregulation of ACE2 by SARS-S protein was proposed as an etiological event in the severe clinical manifestations, our data suggest that TACE antagonists block SARS-CoV infection and also attenuate its severe clinical outcome.
3.
Jia HP, Look DC, Tan P, Shi L, Hickey M, Gakhar L, Chappell MC, Wohlford-Lenane C, McCray PB Jr.
Am J Physiol Lung Cell Mol Physiol. 2009 Jul;297(1):L84-96. doi: 10.1152/ajplung.00071.2009. Epub 2009 May 1.
Angiotensin-converting enzyme 2 (ACE2) is a terminal carboxypeptidase and the receptor for the SARS (sarbeco)  and NL63 (setraco)  ( coronaviruses (CoV). Loss of ACE2 function is implicated in severe acute respiratory syndrome (SARS) pathogenesis, but little is known about ACE2 biogenesis and activity in the airways. We report that ACE2 is shed from human airway epithelia, a site of SARS-CoV infection. The regulation of ACE2 release was investigated in polarized human airway epithelia. Constitutive generation of soluble ACE2 was inhibited by DPC 333, implicating a disintegrin and metalloprotease 17 (ADAM17). Phorbol ester, ionomycin, endotoxin, and IL-1beta and TNFalpha acutely induced ACE2 release, further supporting that ADAM17 and ADAM10 regulate ACE2 cleavage. Soluble ACE2 was enzymatically active and partially inhibited virus entry into target cells. We determined that the ACE2 cleavage site resides between amino acid 716 and the putative transmembrane domain starting at amino acid 741. To reveal structural determinants underlying ACE2 release, several mutant and chimeric ACE2 proteins were engineered. Neither the juxtamembrane stalk region, transmembrane domain, nor the cytosolic domain was needed for constitutive ACE2 release. Interestingly, a point mutation in the ACE2 ectodomain, L584A, markedly attenuated shedding. The resultant ACE2-L584A mutant trafficked to the cell membrane and facilitated SARS-CoV entry into target cells, suggesting that the ACE2 ectodomain regulates its release and that residue L584 might be part of a putative sheddase "recognition motif." Thus ACE2 must be cell associated to serve as a CoV receptor and soluble ACE2 might play a role in modifying inflammatory processes at the airway mucosal surface.Free PMC Article
4.
Haga S, Yamamoto N, Nakai-Murakami C, Osawa Y, Tokunaga K, Sata T, Yamamoto N, Sasazuki T, Ishizaka Y.
Proc Natl Acad Sci U S A. 2008 Jun 3;105(22):7809-14. doi: 10.1073/pnas.0711241105. Epub 2008 May 19.
Severe acute respiratory syndrome coronavirus (SARS-CoV) is a high-risk infectious pathogen. In the proposed model of respiratory failure, SARS-CoV down-regulates its receptor, angiotensin-converting enzyme 2 (ACE2), but the mechanism involved is unknown. We found that the spike protein of SARS-CoV (SARS-S) induced TNF-alpha-converting enzyme (TACE)-dependent shedding of the ACE2 ectodomain. The modulation of TACE activity by SARS-S depended on the cytoplasmic domain of ACE2, because deletion mutants of ACE2 lacking the carboxyl-terminal region did not induce ACE2 shedding or TNF-alpha production. In contrast, the spike protein of HNL63-CoV (NL63-S), a CoV that uses ACE2 as a receptor and mainly induces the common cold, caused neither of these cellular responses. 
Intriguingly, viral infection, judged by real-time RT-PCR analysis of SARS-CoV mRNA expression, was significantly attenuated by deletion of the cytoplasmic tail of ACE2 or knock-down of TACE expression by siRNA. These data suggest that cellular signals triggered by the interaction of SARS-CoV with ACE2 are positively involved in viral entry but lead to tissue damage. These findings may lead to the development of anti-SARS-CoV agents
Free PMC Article
5.
Lambert DW, Yarski M, Warner FJ, Thornhill P, Parkin ET, Smith AI, Hooper NM, Turner AJ.
J Biol Chem. 2005 Aug 26;280(34):30113-9. Epub 2005 Jun 27.
Angiotensin-converting enzyme-2 (ACE2) is a critical regulator of heart function and a cellular receptor for the causative agent of severe-acute respiratory syndrome (SARS), SARS-CoV (coronavirus). ACE2 is a type I transmembrane protein, with an extracellular N-terminal domain containing the active site and a short intracellular C-terminal tail. A soluble form of ACE2, lacking its cytosolic and transmembrane domains, has been shown to block binding of the SARS-CoV spike protein to its receptor
In this study, we examined the ability of ACE2 to undergo proteolytic shedding and investigated the mechanisms responsible for this shedding event. We demonstrated that ACE2, heterologously expressed in HEK293 cells and endogenously expressed in Huh7 cells, undergoes metalloproteinase-mediated, phorbol ester-inducible ectodomain shedding
By using inhibitors with differing potency toward different members of the ADAM (a disintegrin and metalloproteinase) family of proteases, we identified ADAM17 as a candidate mediator of stimulated ACE2 shedding. Furthermore, ablation of ADAM17 expression using specific small interfering RNA duplexes reduced regulated ACE2 shedding, whereas overexpression of ADAM17 significantly increased shedding.
 Taken together, these data provided direct evidence for the involvement of ADAM17 in the regulated ectodomain shedding of ACE2. The identification of ADAM17 as the protease responsible for ACE2 shedding may provide new insight into the physiological roles of ACE2.Free Article

Inga kommentarer:

Skicka en kommentar