Leta i den här bloggen
lördag 29 februari 2020
Luuydin ja koronavirus
(1) Sarsin osalta mainittu reaktiivinen hemofagosytoosi.
2) Voisiko SARS2 infektiossa kehittyöä jollekulle hemofagosytoottinen oireyhtymä luuytimeen?
Tästä näkyy muutama maininta netissä " Harvemmin esiintyy reaktiivista hemofagosytoosia" LÄHDE:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1829448/
3) Mitä tarkoittaa HEMOFAGOSYTOOSI?
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4062561/
Bone Marrow (Luuydin) ja koronavirukset fokuksessa.
In some cases, evidence of reactive hemophagocytosis or bone marrow hypoplasia was present.13, 25, 38 In other cases, however, active bone marrow without reactive hemophagocytosis has been demonstrated.11 In situ hybridization and IHC have detected neither viral genomic sequences nor antigens.30, 31 Both viral isolation and RT-PCR performed on bone marrow were negative.11, 25, 312) Voisiko SARS2 infektiossa kehittyöä jollekulle hemofagosytoottinen oireyhtymä luuytimeen?
Tästä näkyy muutama maininta netissä " Harvemmin esiintyy reaktiivista hemofagosytoosia" LÄHDE:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1829448/
3) Mitä tarkoittaa HEMOFAGOSYTOOSI?
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4062561/
Hemophagocytosis
is the engulfment of hematopoietic cells by activated macrophages
acting outside of usual immune system regulations. Hemophagocytic
lymphohistiocytosis (HLH) covers a wide array of related diseases
including HLH, autosomal recessive familial HLH (FHL), familial
erythrophagocytic lymphohistiocytosis, viral-associated hemophagocytic
syndrome, and autoimmune-associated macrophage activation syndrome
(MAS). These disorders feature severe cytopenias due to this
uncontrolled hemophagocytosis. Other laboratory signs and clinical
symptoms result from disordered immune regulation and cytokine storm.
The term primary HLH refers to an underlying genetic abnormality causing
the disorder, whereas secondary HLH indicates that the disorder is
secondary to underlying conditions such as infection,
autoimmune/rheumatologic, malignant, or metabolic conditions. For the
purposes of this review, FHL will indicate cases with a primary genetic
cause, secondary HLH will refer to cases secondary to infection,
malignancy, or metabolic disorders, and MAS will refer to cases
associated with autoimmune diseases.
Much
has been learned about HLH in the 75 years since it was first
discovered. One of the earliest descriptions of the disease was in 1939
when Scott and Robb-Smith1
described a disorder featuring erythrophagocytosis by proliferating
histiocytes in the lymphoreticular system and called it “histiocytic
medullary reticulosis” or HMR. It was later classified among malignant
histiocytosis. Later in 1952, the familial form of HLH, FHL, was more
fully described by Farquhar and Claireaux2
with the cases of two siblings who succumbed to HLH, and later in 1958,
another sibling from this same family presented in the same manner.3
Risdall was among the first to describe a viral association with HLH
and proposed that the condition be called virus-associated HLH, distinct
from malignant histiocytosis.4
In the years since, researchers have recognized the wide scope of this
disease and the fact that infection often triggers both primary and
secondary HLH. Regardless of cause, physiologically, HLH is
characterized by defective cytotoxic cell function coupled with
unbridled macrophage activity, leading to excessive cytokine production,
subsequent immune dysregulation, and tissue damage. Left untreated, the
dysregulated inflammatory response causes severe neutropenia, and
patients often die from bacterial or fungal infections. The condition
carries high morbidity and mortality.5 Long-term survival in 1983 was estimated to be as low as 4%.6 The median survival without treatment is estimated at <2 a="" aria-expanded="false" aria-haspopup="true" class=" bibr popnode tag_hotlink tag_tooltip" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4062561/#b6-jbm-5-069" id="__tag_383968853" months.="" role="button">62>
Etiketter:
Reaktiivinen hemofagosytoosi luuytimessä
fredag 28 februari 2020
Miten ihmisen immunologinen interferonijärjestelmä ja sen reseptorit voat kehittyneet evoluution aikana (2017
https://www.frontiersin.org/articles/10.3389/fimmu.2017.00209/full
Immunologisen puolustuskyvyn kehittyminen on kaiken elollisen olemassaolon perustavia piirteiä.
Immunologisen puolustuskyvyn kehittyminen on kaiken elollisen olemassaolon perustavia piirteiä.
Chris J. Secombes* and Jun Zou
- Scottish Fish Immunology Research Centre, University of Aberdeen, Aberdeen, UK
Influensa A viruksen (IAV) tehokas evaasiotie. tuhoamalla sekä IFNAR1 että IFNGR1. .
J Virol. 2018 Mar 14;92(7). pii: e00006-18. doi: 10.1128/JVI.00006-18. Print 2018 Apr 1.
Casein Kinase 1α Mediates the Degradation of Receptors for Type I and Type II Interferons Caused by Hemagglutinin of Influenza A Virus.
Abstract
Although
influenza A virus (IAV) evades cellular defense systems to effectively
propagate in the host, the viral immune-evasive mechanisms are
incompletely understood. Our recent data showed that hemagglutinin (HA)
of IAV induces degradation of type I IFN receptor 1 (IFNAR1). Here, we demonstrate that IAV HA induces degradation of type II IFN (IFN-γ) receptor
1 (IFNGR1), as well as IFNAR1, via casein kinase 1α (CK1α), resulting
in the impairment of cellular responsiveness to both type I and II IFNs.
IAV infection or transient HA expression induced degradation of both
IFNGR1 and IFNAR1, whereas HA gene-deficient IAV failed to downregulate
the receptors. IAV HA caused the phosphorylation and ubiquitination of
IFNGR1, leading to the lysosome-dependent degradation of IFNGR1.
Influenza viral HA strongly decreased cellular sensitivity to type II
IFNs, as it suppressed the activation of STAT1 and the induction of
IFN-γ-stimulated genes in response to exogenously supplied recombinant
IFN-γ. Importantly, CK1α, but not p38 MAP kinase or protein kinase D2,
was proven to be critical for HA-induced degradation of both IFNGR1 and
IFNAR1. Pharmacologic inhibition of CK1α or small interfering RNA
(siRNA)-based knockdown of CK1α repressed the degradation processes of
both IFNGR1 and IFNAR1 triggered by IAV infection. Further, CK1α was
shown to be pivotal for proficient replication of IAV. Collectively, the
results suggest that IAV HA induces degradation of IFN receptors via
CK1α, creating conditions favorable for viral propagation. Therefore,
the study uncovers a new immune-evasive pathway of influenza virus.IMPORTANCE
Influenza A virus (IAV) remains a grave threat to humans, causing
seasonal and pandemic influenza. Upon infection, innate and adaptive
immunity, such as the interferon (IFN) response, is induced to protect
hosts against IAV infection. However, IAV seems to be equipped with
tactics to evade the IFN-mediated antiviral responses, although the
detailed mechanisms need to be elucidated. In the present study, we show
that IAV HA induces the degradation of the type II IFN receptor
IFNGR1 and thereby substantially attenuates cellular responses to
IFN-γ. Of note, a cellular kinase, casein kinase 1α (CK1α), is crucial
for IAV HA-induced degradation of both IFNGR1 and IFNAR1. Accordingly,
CK1α is proven to positively regulate IAV propagation. Thus, this study
unveils a novel strategy employed by IAV to evade IFN-mediated antiviral
activities. These findings may provide new insights into the interplay
between IAV and host immunity to impact influenza virus pathogenicity.
Copyright © 2018 American Society for Microbiology.
INFgamma interferoni ja sen reseptoridimeeri IFNGR1/ IFNGR2
IFNG (12q15) IFN gamma interferoni.
IFNGR1 (6q23.2), CD119, IMD27A, IMD27B.
https://www.ncbi.nlm.nih.gov/gene/3459
(.... IFNGR1 rakenteesta ) (1..489 aminohappoa)
https://www.ncbi.nlm.nih.gov/protein/NP_000407.1
( 25.. 113) "FN3"
(161..317 ) (Reseptorikohta)
N-Glycosylation sites 34N, 79N, 86N, 179N, 240N
246-266 TM domain ( transmembraaninen kohta)
Phosphorylation sites 372T, 378S, 403S
Huom tässä on tumareseptorisignaali lvdll, koska tämä osa voi mennä tumaan aktivoidun STAT1dimeerin kanssa. Katso reseptorin kuvaa ja selitystä.
Lisätietoa IFNGR2 reseptorigeenistä
https://www.ncbi.nlm.nih.gov/gene/3460
ja rakenteesta yksityiskohtia
https://www.ncbi.nlm.nih.gov/protein/NP_001316057.1
IFNGR2, AF-1, INFGR2, IFNGT1 IMP28
(21q22.11)
Rakenne: (1..356)
47..145 "FN3"
158..256 ""FN3"
- Gammainterferonin reseptorit muodostavat heterodimeerin IFNGR1 ja IFNG2.
IFNGR1 (6q23.2), CD119, IMD27A, IMD27B.
https://www.ncbi.nlm.nih.gov/gene/3459
- Official Symbol
- IFNGR1provided by HGNC
- Official Full Name
- interferon gamma receptor 1provided by HGNC
- Also known as
- CD119; IFNGR; IMD27A; IMD27B
- Summary
- This gene (IFNGR1) encodes the ligand-binding chain (alpha) of the gamma interferon receptor. Human interferon-gamma receptor is a heterodimer of IFNGR1 and IFNGR2. A genetic variation in IFNGR1 is associated with susceptibility to Helicobacter pylori infection. In addition, defects in IFNGR1 are a cause of mendelian susceptibility to mycobacterial disease, also known as familial disseminated atypical mycobacterial infection. [provided by RefSeq, Jul 2008]
- Expression
- Ubiquitous expression in spleen (RPKM 51.4), fat (RPKM 48.1) and 25 other tissues See more
- Preferred Names
- interferon gamma receptor 1
- Names
- AVP, type 2
- CD119 antigen
- CDw119
- IFN-gamma receptor 1
- IFN-gamma-R-alpha
- IFN-gamma-R1
- antiviral protein, type 2
- immune interferon receptor 1
- interferon-gamma receptor alpha chain
https://www.ncbi.nlm.nih.gov/protein/NP_000407.1
( 25.. 113) "FN3"
(161..317 ) (Reseptorikohta)
Interferon gamma receptor (IFNGR1)
This
family consists of several eukaryotic and viral interferon gamma
receptor proteins. Molecular interactions among cytokines and cytokine
receptors in eukaryotes form the basis of many cell-signaling pathways
relevant to immune function. Human interferon-gamma (IFN-gamma) signals
through a multimeric receptor complex consisting of two different but
structurally related transmembrane chains: the high-affinity
receptor-binding subunit (IFN-gammaRalpha) and a species specific
accessory factor (AF-1 or IFN-gammaRbeta). The vaccinia viral interferon
gamma receptor has been shown to be secreted from infected cells during
early infection. The structure has been halved such that the N-terminus
of this family is now represented by Tissue_fac pfam01108.N-Glycosylation sites 34N, 79N, 86N, 179N, 240N
246-266 TM domain ( transmembraaninen kohta)
Phosphorylation sites 372T, 378S, 403S
Huom tässä on tumareseptorisignaali lvdll, koska tämä osa voi mennä tumaan aktivoidun STAT1dimeerin kanssa. Katso reseptorin kuvaa ja selitystä.
ORIGIN 1 mallfllplv mqgvsraemg tadlgpssvp tptnvtiesy nmnpivywey qimpqvpvft 61 vevknygvkn sewidacini shhycnisdh vgdpsnslwv rvkarvgqke sayakseefa 121 vcrdgkigpp kldirkeekq imidifhpsv fvngdeqevd ydpettcyir vynvyvrmng 181 seiqykiltq keddcdeiqc qlaipvssln sqycvsaegv lhvwgvttek skevcitifn 241 ssikgslwip vvaalllflv lslvficfyi kkinplkeks iilpkslisv vrsatletkp 301 eskyvslits yqpfslekev vceeplspat vpgmhtednp gkvehteels sitevvttee 361 nipdvvpgsh ltpieresss plssnqsepg sialnsyhsr ncsesdhsrn gfdtdsscle 421 shsslsdsef ppnnkgeikt egqelitvik aptsfgydkp hvlvdllvdd sgkesligyr 481 ptedskefs //
Lisätietoa IFNGR2 reseptorigeenistä
https://www.ncbi.nlm.nih.gov/gene/3460
- Also known as
- AF-1; IFGR2; IMD28; IFNGT1
- Summary
- This gene (IFNGR2) encodes the non-ligand-binding beta chain of the gamma interferon receptor. Human interferon-gamma receptor is a heterodimer of IFNGR1 and IFNGR2. Defects in IFNGR2 are a cause of mendelian susceptibility to mycobacterial disease (MSMD), also known as familial disseminated atypical mycobacterial infection. MSMD is a genetically heterogeneous disease with autosomal recessive, autosomal dominant or X-linked inheritance. [provided by RefSeq, Jul 2008]
- Expression
- Ubiquitous expression in placenta (RPKM 30.0), appendix (RPKM 25.4) and 25 other tissues See more
- Preferred Names
- interferon gamma receptor 2
- Names
- IFN-gamma receptor 2
- IFN-gamma-R-beta
- IFN-gamma-R2
- interferon gamma receptor accessory factor-1 (AF-1)
- interferon gamma receptor beta chain
- interferon gamma transducer 1, (IFNGT1)
- Ref. " Data suggest IFNG plays various roles in dynamics of inflammation in subjects with underlying autoimmunity modeled as "canonical" and "non-canonical" pathways; in canonical pathway, IFNG dimerizes and binds to IFNGR1 in IFNGR1/IFNGR2 hetero-multimer; STAT transcription factors are involved in non-canonical pathway. (IFNG = interferon gamma; IFNGR = IFNG receptor; STAT = signal transducers and activators of transcription)"
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5572907/
- (FIGURE!) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5572907/figure/F2/
ja rakenteesta yksityiskohtia
https://www.ncbi.nlm.nih.gov/protein/NP_001316057.1
IFNGR2, AF-1, INFGR2, IFNGT1 IMP28
(21q22.11)
Rakenne: (1..356)
47..145 "FN3"
158..256 ""FN3"
ORIGIN 1 mrptllwsll lllgvfaaaa aappaqltle tyqewcndsa athdplsqlp apqhpkirly 61 naeqvlswep valsnstrpv vyqvqfkytd skwftadims igvnctqita tecdftaasp 121 sagfpmdfnv tlrlraelga lhsawvtmpw fqhyrnvtvg ppenievtpg egsliirfss 181 pfdiadtsta ffcyyvhywe kggiqqvkgp frsnsisldn lkpsrvyclq vqaqllwnks 241 nifrvghlsn iscyetmada stelqqvili svgtfsllsv lagacfflvl kyrglikywf 301 htppsiplqi eeylkdptqp ilealdkdss pkddvwdsvs iisfpekeqe dvlqtl //
Onko uudella SARS2- koronaviruksella neurotrooppisia piirteitä?
Kerään tähän tietoja .
On mainittu muutamisas artikkeleissa lehdistössä, että virus aiheutta tuskatiloja, paniikkia ja myös konfuusiota, jotka kyllä ovat ohimeneviäkin toipuneilla. Neurologisista jälkitgaudeista on liian varhaista sanoa mitään. Kova väsymys kuuluu tulehdukseen.
Pari vanhaa tietoa koronavirusten neurotropismista netistä googlaamalla:
). Abstract
(Jokin vanha koronavirus oli varsin neurotrooppinen Viruksen hepatiitti-koronavirus on osoitautunutoelvan hyvä koe-eläinmalli myös mahdollisista enkefaliiteista ja demyelinisoivista seuraamuksista. Ihmisellä havaittiin tämän alunperin vain talvallisia vilustumisa aiheuttavan viruksen
mahdollisuus päästä aivoihin tekemään enkefaliitteja. ne taas voivat oolla eri asteisia, lievissä virus puhdistuu vähitellen itsestään eikä jätä jälkitauteja. Joissain tapauksissa myelinisaatiohäiriö progredioituu ja enkefaliitti voi olla hengenvaarallinen. ne ihmisvirukset mitkä ensimmäistä kertaa liitettiin neurotrooppisuuteen olivat varhain jo 1960 luvulla löydetyt embecovirus betakoronavirus HCoV-OC43 ja HCoV-229E, Duvinavirus, alfakoronavirus . Myös aiemmasta SARS CoV virukssta maintian neurotrooppisuutta.
On mainittu muutamisas artikkeleissa lehdistössä, että virus aiheutta tuskatiloja, paniikkia ja myös konfuusiota, jotka kyllä ovat ohimeneviäkin toipuneilla. Neurologisista jälkitgaudeista on liian varhaista sanoa mitään. Kova väsymys kuuluu tulehdukseen.
Pari vanhaa tietoa koronavirusten neurotropismista netistä googlaamalla:
Neuroinvasive and neurotropic human respiratory ... - NCBI
av M Desforges - 2014 - Citerat av 11 - Relaterade artiklar
Neuroinvasive and neurotropic human respiratory coronaviruses: potential ... respiratory distress syndrome, or even severe acute respiratory syndrome (SARS
In humans, viral
infections of the respiratory tract are a leading cause of morbidity and
mortality worldwide. Several recognized respiratory viral agents have a
neuroinvasive capacity since they can spread from the respiratory tract
to the central nervous system (CNS). Once there, infection of CNS cells
(neurotropism) could lead to human health problems, such as
encephalitis and long-term neurological diseases. Among the various
respiratory viruses, coronaviruses are important pathogens of humans and
animals. Human Coronaviruses (HCoV) usually infect the upper
respiratory tract, where they are mainly associated with common colds.
However, in more vulnerable populations, such as newborns, infants, the
elderly, and immune-compromised individuals, they can also affect the
lower respiratory tract, leading to pneumonia, exacerbations of asthma,
respiratory distress syndrome, or even severe acute respiratory syndrome
(SARS). The respiratory involvement of HCoV has been clearly
established since the 1960s. In addition, for almost three decades now,
the scientific literature has also demonstrated that HCoV are
neuroinvasive and neurotropic and could induce an overactivation of the
immune system, in part by participating in the activation of
autoreactive immune cells that could be associated with autoimmunity in
susceptible individuals. Furthermore, it was shown that in the murine
CNS, neurons are the main target of infection, which causes these
essential cells to undergo degeneration and eventually die by some form
of programmed cell death after virus infection. Moreover, it appears
that the viral surface glycoprotein (S) represents an important factor
in the neurodegenerative process. Given all these properties, it has
been suggested that these recognized human respiratory pathogens could
be associated with the triggering or the exacerbation of neurological
diseases for which the etiology remains unknown or poorly understood.
Neurotropic coronavirus infections - ResearchGate
Neurotropism and neuroinvasiveness have also has been described for two other members of the Coronaviridae family, HCoV-OC43 and SARS-coronavirus ...
(Jokin vanha koronavirus oli varsin neurotrooppinen Viruksen hepatiitti-koronavirus on osoitautunutoelvan hyvä koe-eläinmalli myös mahdollisista enkefaliiteista ja demyelinisoivista seuraamuksista. Ihmisellä havaittiin tämän alunperin vain talvallisia vilustumisa aiheuttavan viruksen
mahdollisuus päästä aivoihin tekemään enkefaliitteja. ne taas voivat oolla eri asteisia, lievissä virus puhdistuu vähitellen itsestään eikä jätä jälkitauteja. Joissain tapauksissa myelinisaatiohäiriö progredioituu ja enkefaliitti voi olla hengenvaarallinen. ne ihmisvirukset mitkä ensimmäistä kertaa liitettiin neurotrooppisuuteen olivat varhain jo 1960 luvulla löydetyt embecovirus betakoronavirus HCoV-OC43 ja HCoV-229E, Duvinavirus, alfakoronavirus . Myös aiemmasta SARS CoV virukssta maintian neurotrooppisuutta.
Abstract
Introduction/classification
Mouse hepatitis virus (MHV) is a member of the Coronaviridae family in
the order Nidovirales. Coronaviruses are classified into one of three
antigenic groups, with MHV classified as a member of group 2 [1].
Members of the Coronaviridae family infect a wide range of species
including humans, cows, pigs, chickens, dogs, cats, bats, and mice. In
addition to causing clinically relevant disease in humans ranging from
mild upper respiratory infection (e.g., HCoV [human coronavirus]-OC43
and HCoV-229E responsible for a large fraction of common colds) to
severe acute respiratory syndrome (SARS) [2, 3], coronavirus infections
in cows, chickens, and pigs exact a significant annual economic toll on
the livestock industry. MHV is a natural pathogen of mice that generally
is restricted to replication within the gastrointestinal tract [4, 5].
However, there exist several laboratory strains of MHV that have adapted
to replicate efficiently in the central nervous system (CNS) of mice
and other rodents. Depending on the strain of MHV, virulence and
pathology ranges from mild encephalitis with subsequent clearance of the
virus and the development of demyelination to rapidly fatal
encephalitis.
Thus, the neurotropic strains of MHV have proved to be
useful systems in which to study processes of virus- and immune-mediated
demyelination, virus clearance and/or persistence in the CNS, and
mechanisms of virus evasion from the immune system.
Neurotropism and
neuroinvasiveness have also has been described for two other members of
the Coronaviridae family, HCoV-OC43 and SARS-coronavirus (CoV) (Table
4.1). © Cambridge University Press 2008 and Cambridge University Press,
2009.
CoV enkefaltiitilta suojauksessa on Interferoni tyyppi I signaloinnin säilyminen tärkeä
(Osa koronaviruksista tiedetään neurotrooppisiksi ja sen takia kliinisissä oireissa pitäisi huomat aivoperäiset oireet. Lapsilla jotkut koronavirukset aiheuttavat enkefaliittia)
https://www.ncbi.nlm.nih.gov/pubmed/17928334
( Tässä on muuten syy, miksi pitäisi kehittää koronavirusrokotteita. ne tulevat aina toistumaan maapallolla ja niissäon enkefaliittivaaransa nuorisolle. tällä hetkellä parhaimmillaankin rokotteenkehitelyyn menee yli 90 päivää Israelin arvion mukaan).
https://www.ncbi.nlm.nih.gov/pubmed/17928334
J Virol. 2008 Jan;82(1):300-10. Epub 2007 Oct 10.
Type I interferons are essential in controlling neurotropic coronavirus infection irrespective of functional CD8 T cells.
Neurotropic coronavirus
infection induces expression of both beta interferon (IFN-beta) RNA and
protein in the infected rodent central nervous system (CNS).
However, the relative contributions of type I IFN (IFN-I) to direct, cell-type-specific virus control or CD8 T-cell-mediated effectors in the CNS are unclear.
IFN-I receptor-deficient (IFNAR(-/-)) mice infected with a sublethal and demyelinating neurotropic virus variant and those infected with a nonpathogenic neurotropic virus variant both succumbed to infection within 9 days. Compared to wild-type (wt) mice, replication was prominently increased in all glial cell types and spread to neurons, demonstrating expanded cell tropism.
Furthermore, increased pathogenesis was associated with significantly enhanced accumulation of neutrophils, tumor necrosis factor alpha, interleukin-6, chemokine (C-C motif) ligand 2, and IFN-gamma within the CNS.
The absence of IFN-I signaling did not impair induction or recruitment of virus-specific CD8 T cells, the primary adaptive mediators of virus clearance in wt mice. Despite similar IFN-gamma-mediated major histocompatibility complex class II upregulation on microglia in infected IFNAR(-/-) mice, class I expression was reduced compared to that on microglia in wt mice, suggesting a synergistic role of IFN-I and IFN-gamma in optimizing class I antigen presentation.
These data demonstrate a critical direct antiviral role of IFN-I in controlling virus dissemination within the CNS, even in the presence of potent cellular immune responses.
By limiting early viral replication and tropism, IFN-I controls the balance of viral replication and immune control in favor of CD8 T-cell-mediated protective functions.
However, the relative contributions of type I IFN (IFN-I) to direct, cell-type-specific virus control or CD8 T-cell-mediated effectors in the CNS are unclear.
IFN-I receptor-deficient (IFNAR(-/-)) mice infected with a sublethal and demyelinating neurotropic virus variant and those infected with a nonpathogenic neurotropic virus variant both succumbed to infection within 9 days. Compared to wild-type (wt) mice, replication was prominently increased in all glial cell types and spread to neurons, demonstrating expanded cell tropism.
Furthermore, increased pathogenesis was associated with significantly enhanced accumulation of neutrophils, tumor necrosis factor alpha, interleukin-6, chemokine (C-C motif) ligand 2, and IFN-gamma within the CNS.
The absence of IFN-I signaling did not impair induction or recruitment of virus-specific CD8 T cells, the primary adaptive mediators of virus clearance in wt mice. Despite similar IFN-gamma-mediated major histocompatibility complex class II upregulation on microglia in infected IFNAR(-/-) mice, class I expression was reduced compared to that on microglia in wt mice, suggesting a synergistic role of IFN-I and IFN-gamma in optimizing class I antigen presentation.
These data demonstrate a critical direct antiviral role of IFN-I in controlling virus dissemination within the CNS, even in the presence of potent cellular immune responses.
By limiting early viral replication and tropism, IFN-I controls the balance of viral replication and immune control in favor of CD8 T-cell-mediated protective functions.
- PMID:
- 17928334
- PMCID:
- PMC2224360
- DOI:
- 10.1128/JVI.01794-07
- [Indexed for MEDLINE]
( Tässä on muuten syy, miksi pitäisi kehittää koronavirusrokotteita. ne tulevat aina toistumaan maapallolla ja niissäon enkefaliittivaaransa nuorisolle. tällä hetkellä parhaimmillaankin rokotteenkehitelyyn menee yli 90 päivää Israelin arvion mukaan).
Miten ihmipatogeeniset koronavirukset kiertävät interferonijärjrstelmää?
Interferonijärjestelmän molekyylit : IFNAR1 ja IFNAR2 IFNAR resedptorin muodostuksessa.
COVID-19 virus aiheuttaa IRF3 alalssäätymisen, IFN-beta välitteisen suoran interferonisignaloinnin tyrehtymisen ja IFNAR1-reseptorin hajoittumisen. mikä myöhästyttää nopean suoran immuunivasteen ja painottaa päinvastoin myöhemmin alkavaa vastetta, joka on sytokiinimyrskyn tapaista ja tällöin nähdään mm IFNgamma, TNFa ja runsaasti interleukiineja kohonneina.
https://www.ncbi.nlm.nih.gov/gene/3454
IFNAR1 (21q22.11)
https://www.ncbi.nlm.nih.gov/gene/3454
IFNAR1 (21q22.11)
- Preferred Names
- interferon alpha/beta receptor 1
- Names
- CRF2-1
- IFN-R-1
- IFN-alpha/beta receptor 1
- alpha-type antiviral protein
- beta-type antiviral protein
- cytokine receptor class-II member 1
- cytokine receptor family 2 member 1
- interferon (alpha, beta and omega) receptor 1
- interferon receptor 1
- interferon-alpha/beta receptor alpha chain
- interferon-beta receptor 1
- type I interferon receptor 1
- Also known as
- AVP; IFRC; IFNAR; IFNBR; IFN-alpha-REC
- Summary
- The protein encoded by this gene is a type I membrane protein that forms one of the two chains of a receptor for interferons alpha and beta. Binding and activation of the receptor stimulates Janus protein kinases, which in turn phosphorylate several proteins, including STAT1 and STAT2. The encoded protein also functions as an antiviral factor. [provided by RefSeq, Jul 2008]
- Expression
- Ubiquitous expression in thyroid (RPKM 14.1), urinary bladder (RPKM 11.9) and 25 other tissues See more
- Orthologs
- mouse
all
(peptidin rakenteesta: 1-557 aminohappoa , propeptidi. peptidi on opteimpi ja siinä o nuseita erityisrakenteita , runsaasti glykosylaatiota solun ulkopuolella olevassa osassa ja fosforylaatiokohtia solunsisäpuolella olevassa osassa )
(25..114) " FN3" Fibronectin type 3 domain; One of three types of internal repeats found in the plasma protein fibronectin. Its tenth fibronectin type III repeat contains an RGD cell recognition sequence in a flexible loop between 2 strands. Approximately 2% of all animal proteins contain the FN3 repeat; including extracellular and intracellular proteins, membrane spanning cytokine receptors, growth hormone receptors, tyrosine phosphatase receptors, and adhesion molecules. FN3-like domains are also found in bacterial glycosyl hydrolases.
(126..224) "interfer-bind"
Interferon-alpha/beta receptor, fibronectin type IIIMembers of this family adopt a secondary structure consisting of seven beta-strands arranged in an immunoglobulin-like beta-sandwich, in a Greek-key topology. They are required for binding to interferon-alpha.
(334..430) "interfer-bind" FN3 type
(437..457) transmebrane domain ( kalvon läpäisevä jakso)
(491-500 ) important for interaction with TYK2
466Y,481Y, 495S, 535S phosphorylation site
https://www.ncbi.nlm.nih.gov/protein/NP_000620.2
ORIGIN 1 mmvvllgatt lvlvavapwv lsaaaggknl kspqkvevdi iddnfilrwn rsdesvgnvt 61 fsfdyqktgm dnwiklsgcq nitstkcnfs slklnvyeei klriraeken tsswyevdsf 121 tpfrkaqigp pevhleaedk aivihispgt kdsvmwaldg lsftyslviw knssgveeri 181 eniysrhkiy klspettycl kvkaalltsw kigvyspvhc ikttvenelp ppenievsvq 241 nqnyvlkwdy tyanmtfqvq wlhaflkrnp gnhlykwkqi pdcenvkttq cvfpqnvfqk 301 giyllrvqas dgnntsfwse eikfdteiqa fllppvfnir slsdsfhiyi gapkqsgntp 361 viqdypliye iifwentsna erkiiekktd vtvpnlkplt vycvkaraht mdeklnkssv 421 fsdavcektk pgntskiwli vgicialfal pfviyaakvf lrcinyvffp slkpssside 481 yfseqplknl llstseeqie kcfiienist iatveetnqt dedhkkyssq tsqdsgnysn 541 edesesktse elqqdfv //
(Alla oleva kuva on netistä kun ligandi ilmenee, reseptori dimerisoituu. )
https://www-ssrl.slac.stanford.edu/content/science/highlight/2012-04-30/how-single-receptor-discriminates-between-variety-different-ligands
...
Reseptorikompelksin toinen osapuoli:
IFNAR2 (21q22.11)
https://www.ncbi.nlm.nih.gov/gene/3455
isoform b structure:
https://www.ncbi.nlm.nih.gov/protein/NP_000865.2
ORIGIN 1 mllsqnafif rslnlvlmvy islvfgisyd spdytdesct fkislrnfrs ilswelknhs 61 ivpthytlly timskpedlk vvkncanttr sfcdltdewr stheayvtvl egfsgnttlf 121 scshnfwlai dmsfeppefe ivgftnhinv mvkfpsivee elqfdlslvi eeqsegivkk 181 hkpeikgnms gnftyiidkl ipntnycvsv ylehsdeqav iksplkctll ppgqesesae 241 sakiggiitv flialvltst ivtlkwigyi clrnslpkvl rqGlakgwna Vaihrcshna 301 lqsetpelkQ ssclsfpssW dykraslcps d
Putative domain of unknown functionRegion (24--120) Tissue factorThis family is found in metazoa, and is very similar to the fibronectin type III domain. The family is found in cytokine receptors, interleukin and interferon receptors and coagulation factor III proteins. It occurs multiple times, as does fn3, family pfam00041.The region (134..231)
Interferon-alpha/beta receptor, fibronectin type IIIMembers of this family adopt a secondary structure consisting of seven beta-strands arranged in an immunoglobulin-like beta-sandwich, in a Greek-key topology. They are required for binding to interferon-alpha.This GVQW (293..239) short domain is often found nested inside other longer domains. The function is not known, but the domain carries a highly conserved GVQW motif. It is possile that this is an AluS that has expanded in Human and Macaque genomes.
Miten sinkkikloridi antioksidanttina vaikuttaa tähän järjestelmään: https://www.ncbi.nlm.nih.gov/pubmed/19362011/
SARS virus ja APOBEC
https://www.sciencedirect.com/science/article/pii/S0042682209001834
Sars viruksen N-proteiini ja APOBECG tekevät interaktion, muta tässä vaiheessa virus suorittaa virioninsa pakkaamista ja vie tätä antiviraalista kompleksia virioniin mukaan.
Sars viruksen N-proteiini ja APOBECG tekevät interaktion, muta tässä vaiheessa virus suorittaa virioninsa pakkaamista ja vie tätä antiviraalista kompleksia virioniin mukaan.
TOLL reseptorit ja SARS ? Miten evaasio?
https://mbio.asm.org/content/6/3/e00638-15
Toll-Like Receptor 3 Signaling via TRIF Contributes to a Protective Innate Immune Response to Severe Acute Respiratory Syndrome Coronavirus Infection
Allison L. Totura, Alan Whitmore, Sudhakar Agnihothram, Alexandra Schäfer, Michael G. Katze, Mark T. Heise, Ralph S. Baric
W. Ian Lipkin, Editor
DOI: 10.1128/mBio.00638-15
SARS ja TRIM25 . Sars N-proteiini -TRIM25 SPRY-domain interaktio ja evasio
- Bowie AG,
- Unterholzner L
2. https://jvi.asm.org/content/91/8/e02143-16
Virus-Cell Interactions
The Severe Acute Respiratory Syndrome Coronavirus Nucleocapsid Inhibits Type I Interferon Production by Interfering with TRIM25-Mediated RIG-I Ubiquitination
Yong Hu, Wei Li, Ting Gao, Yan Cui, Yanwen Jin, Ping Li, Qingjun Ma, Xuan Liu, Cheng Cao
Stanley Perlman, Editor
SARS ja komplementti
mBio. 2018 Oct 9;9(5). pii: e01753-18. doi: 10.1128/mBio.01753-18.
https://bmcinfectdis.biomedcentral.com/articles/10.1186/1471-2334-9-51
https://bmcinfectdis.biomedcentral.com/articles/10.1186/1471-2334-9-51
Complement Activation Contributes to Severe Acute Respiratory Syndrome Coronavirus Pathogenesis. Gralinski LE1, Sheahan TP1, Morrison TE2, Menachery VD1,3, Jensen K1, Leist SR1, Whitmore A4, Heise MT4, Baric RS5.Abstract
Acute respiratory distress syndrome (ARDS) is immune-driven pathologies that are observed in severe cases of severe acute respiratory syndrome coronavirus (SARS-CoV) infection. SARS-CoV emerged in 2002 to 2003 and led to a global outbreak of SARS. As with the outcome of human infection, intranasal infection of C57BL/6J mice with mouse-adapted SARS-CoV results in high-titer virus replication within the lung, induction of inflammatory cytokines and chemokines, and immune cell infiltration within the lung.Using this model, we investigated the role of the complement system during SARS-CoV infection.
We observed activation of the complement cascade in the lung as early as day 1 following SARS-CoV infection.
To test whether this activation contributed to protective or pathologic outcomes, we utilized mice deficient in C3 (C3-/-), the central component of the complement system. Relative to C57BL/6J control mice, SARS-CoV-infected C3 -/- mice exhibited significantly less weight loss and less respiratory dysfunction despite equivalent viral loads in the lung. Significantly fewer neutrophils and inflammatory monocytes were present in the lungs of C3 -/- mice than in C56BL/6J controls, and subsequent studies revealed reduced lung pathology and lower cytokine and chemokine levels in both the lungs and the sera of C3 -/- mice than in controls.
These studies identify the complement system as an important host mediator of SARS-CoV-induced disease and suggest that complement activation regulates a systemic proinflammatory response to SARS-CoV infection.
Furthermore, these data suggest that SARS-CoV-mediated disease is largely immune driven and that inhibiting complement signaling after SARS-CoV infection might function as an effective immune therapeutic.
IMPORTANCE The complement system is a critical part of host defense to many bacterial, viral, and fungal infections. It works alongside pattern recognition receptors to stimulate host defense systems in advance of activation of the adaptive immune response. In this study, we directly test the role of complement in SARS-CoV pathogenesis using a mouse model and show that respiratory disease is significantly reduced in the absence of complement even though viral load is unchanged. Complement-deficient mice have reduced neutrophilia in their lungs and reduced systemic inflammation, consistent with the observation that SARS-CoV pathogenesis is an immune-driven disease. These data suggest that inhibition of complement signaling might be an effective treatment option following coronavirus infection.
Copyright © 2018 Gralinski et al.
onsdag 26 februari 2020
Göteborg yksi CoV+ case. Ulkomailta tullut.
Italiassa on tautia olemassa. Viikko sitten 30 v nuorimies poika tullut RuotsiinItalian turistimatkalta ja kolmen päivän päästä tulosta alkanut oireilla ja tänään iltapäivällä on saatu tulos nCoV+. Häntä hoidetaan Sahlgrenskassa ja kontakteja kartoitetaan.
Etiketter:
Göteborg CoV tapaus varmistettu 26.2. 2020
Miten CoV vaikuttaa lapsiin? Hengitystietulehduksia ja enkefaliitejakin
Uudesta SARS2 viruksesta en ole löytänyt erityistä artikkelia lapsien tautimuodosta yleensä. Korostetaan että lähinnä vanhempi väki ja immuunikyvyltään heikommat ja muita tauteja potevat olisivat eniten sairaita, miehet varsinkin.
Sattumoisin huomasin vuodelta 2016 kiinalaisen artikkelin, jossa tehtiin katsahdusta lasten CoV enkefaliitteja ja CoV keuhkotulehduksia sairastumisista. Viruksen nimeä ei tässä mainittu tarkemmin. Siis kyse oli tavallisesta kylmettymis-koronaviruksista, joilla niilläkin voi olla vakavia oireitaan.
Sairaalaan oli otettu enkefaliittiepäilynä 183 lasta ja heistä 22 :lla oli CoV-laji aiheutajana. Akuuttia respiratorista oireyhtymää (ARDS) potevia lapsia otettiin sairaalaan 236 ja heistä 26 lapsella oli CoV viruslajin aiheuttama tauti. Kummassakin CoV virustauteja potevassa ryhmässä oli enemmän poikia ( 18 resp. 20).
Tehtiin vertailu CoV virustauteja poteneiden ryhmien kesken oireista ja löydöksistä ja verenkuvamuutoksista ja vertailtiin myös terveeseen kontrolliryhmään (26 lasta). Iät olivat alle 16 vuotta, keskimääräinen ikä 36 kk.
Enkefaliittiryhmä toipui oireettomaksi. Respiratorisesta ryhmästä 4:n kunto huononi ja muut toipuivat oireettomiksi.
Artikkeli mainitsee CoV viruksen osoittavan lapsilla neurotrooppisuutta ja se mahdollisuus tulee ottaa huomioon.
Periferisestä verenkuvasta katsottiin lymfosyytit, eosinofiilit, neutrofiilit ja monosyytit ja niiden muuttumiset taudin vaikutukseta. Katsottiin myös G-CSF ja GM-CSF, interleukiinit IL-6, IL-8 ja MCP-1 koronavirusenkefaliittilapsilta.lapsilta. nimittäin vakavat koronavirukset SARS ja MERS aiehuttavat korkeita intgerleukiinien seerumipitoisuuksia (IL-6, IL-8 ja MCP-1) Näistä voi jäädä jälkitauteja. Artikkelissa taulukoidaan taustatiedot ja tyypilliset oireet, hoito ja tutkimukset ( enkefaliitissa mm MRI, CT, EEG, CSF; Respiratorista tautia potevilta otettiin mm keuhkoröntgentutkimuksia.
Artikkeli painottaa sitä, että tulee ottaa huomioon lapsilla koronaviruksen neurotrooppinen piirre. Vielähän ei ole rokotusta koronavirusta vastaan.
https://www.karger.com/Article/FullText/453066
Sattumoisin huomasin vuodelta 2016 kiinalaisen artikkelin, jossa tehtiin katsahdusta lasten CoV enkefaliitteja ja CoV keuhkotulehduksia sairastumisista. Viruksen nimeä ei tässä mainittu tarkemmin. Siis kyse oli tavallisesta kylmettymis-koronaviruksista, joilla niilläkin voi olla vakavia oireitaan.
Sairaalaan oli otettu enkefaliittiepäilynä 183 lasta ja heistä 22 :lla oli CoV-laji aiheutajana. Akuuttia respiratorista oireyhtymää (ARDS) potevia lapsia otettiin sairaalaan 236 ja heistä 26 lapsella oli CoV viruslajin aiheuttama tauti. Kummassakin CoV virustauteja potevassa ryhmässä oli enemmän poikia ( 18 resp. 20).
Tehtiin vertailu CoV virustauteja poteneiden ryhmien kesken oireista ja löydöksistä ja verenkuvamuutoksista ja vertailtiin myös terveeseen kontrolliryhmään (26 lasta). Iät olivat alle 16 vuotta, keskimääräinen ikä 36 kk.
Enkefaliittiryhmä toipui oireettomaksi. Respiratorisesta ryhmästä 4:n kunto huononi ja muut toipuivat oireettomiksi.
Artikkeli mainitsee CoV viruksen osoittavan lapsilla neurotrooppisuutta ja se mahdollisuus tulee ottaa huomioon.
Periferisestä verenkuvasta katsottiin lymfosyytit, eosinofiilit, neutrofiilit ja monosyytit ja niiden muuttumiset taudin vaikutukseta. Katsottiin myös G-CSF ja GM-CSF, interleukiinit IL-6, IL-8 ja MCP-1 koronavirusenkefaliittilapsilta.lapsilta. nimittäin vakavat koronavirukset SARS ja MERS aiehuttavat korkeita intgerleukiinien seerumipitoisuuksia (IL-6, IL-8 ja MCP-1) Näistä voi jäädä jälkitauteja. Artikkelissa taulukoidaan taustatiedot ja tyypilliset oireet, hoito ja tutkimukset ( enkefaliitissa mm MRI, CT, EEG, CSF; Respiratorista tautia potevilta otettiin mm keuhkoröntgentutkimuksia.
Artikkeli painottaa sitä, että tulee ottaa huomioon lapsilla koronaviruksen neurotrooppinen piirre. Vielähän ei ole rokotusta koronavirusta vastaan.
https://www.karger.com/Article/FullText/453066
Intervirology 2016;59:163-169
Coronavirus Infections in the Central Nervous System and Respiratory Tract Show Distinct Features in Hospitalized ChildrenLi Y.d · Li H.b · Fan R.a · Wen B.a · Zhang J.a · Cao X.c · Wang C.a · Song Z.a · Li S.a · Li X.a · Lv X.e · Qu X.a · Huang R.b · Liu W.aAuthor affiliations Corresponding Author
Keywords: CoronavirusRespiratory tractCentral nervous systemCytokine
Coronavirus (CoV) is an enveloped virus with a large positive-sense, single-stranded RNA genome [1,2,3] belonging to the Coronaviridae family [4]. Human pathogenic CoVs include HCoV-229E, HCoV-OC43, HCoV-HKU1, HCoV-NL63, severe acute respiratory syndrome CoV (SARS-CoV), and Middle East respiratory syndrome CoV (MERS-CoV) [5,6,7]. Human pathogenic CoVs are associated with a wide range of respiratory illnesses, including common colds, pneumonia, and bronchiolitis [7]. Additionally, several studies have described that CoVs are associated with CNS diseases such as acute disseminated encephalomyelitis and multiple sclerosis [8,9,10]. Respiratory tract infection contributes to high morbidity and mortality with a worldwide disease burden estimated at 112,900,000 disability-adjusted life years and 3.5 million deaths [11]. Furthermore, the mortality of viral encephalitis ranges from 4.6 to 29% and nearly 50% of survivors are at a high risk of developing neurological disorders [12]. ... In this study, we conducted a comprehensive analysis to investigate clinical features and cytokine profiles in hospitalized children diagnosed with either central nervous system (CNS) or respiratory tract infection of CoV. The inclusion criteria in this study for the diagnosis of clinically suspected acute encephalitic patients were modified according to the previous study as follows [25]: (1) age <16 2="" a="" altered="" and="" at="" axillary="" consciousness="" convulsion="" days:="" duration="" encephalitis-like="" fever="" following="" headache="" hospitalized="" illness="" least="" levels="" neck="" of="" or="" signs="" stiffness="" symptoms="" the="" with="" years="">24 h, and focal neurological signs. A total of 183 hospitalized children with clinically suspected acute encephalitis and 236 children with acute respiratory tract infection were enrolled from May 2014 to April 2015 at the Children's Hospital of Chenzhou (Hunan Province, China).16> |
|
SARS CoV ja sen kymotrypsiinin kaltaisen proteaasin (3CLPro) estäjien kehittely
Search results
Items: 4
1.
Lim L, Gupta G, Roy A, Kang J, Srivastava S, Shi J, Song J.
Prog Biophys Mol Biol. 2019 May;143:52-66. doi: 10.1016/j.pbiomolbio.2018.08.009. Epub 2018 Sep 11. Review.
2.
Shimamoto Y, Hattori Y, Kobayashi K, Teruya K, Sanjoh A, Nakagawa A, Yamashita E, Akaji K.
Bioorg Med Chem. 2015 Feb 15;23(4):876-90. doi: 10.1016/j.bmc.2014.12.028. Epub 2014 Dec 20.
3.
Regnier T, Sarma D, Hidaka K, Bacha U, Freire E, Hayashi Y, Kiso Y.
Bioorg Med Chem Lett. 2009 May 15;19(10):2722-7. doi: 10.1016/j.bmcl.2009.03.118. Epub 2009 Mar 28.
A series of trifluoromethyl, benzothiazolyl or thiazolyl ketone-containing peptidic compounds as SARS-CoV
3CL protease inhibitors were developed and their potency was evaluated
by in vitro protease inhibitory assays. Three candidates had encouraging
results for the development of new anti-SARS compounds
https://www.ncbi.nlm.nih.gov/pmc/?term=19362479%5BPMID%5D&report=imagesdocsum
https://www.ncbi.nlm.nih.gov/pmc/?term=19362479%5BPMID%5D&report=imagesdocsum
4.
Ghosh AK, Xi K, Ratia K, Santarsiero BD, Fu W, Harcourt BH, Rota PA, Baker SC, Johnson ME, Mesecar AD.
J Med Chem. 2005 Nov 3;48(22):6767-71.
tisdag 25 februari 2020
(jatkuu) SARS2 ja AGE2 tutkimuksen tuoreita referenssejä
References
- 1.↵Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao GF, Tan W, China Novel Coronavirus I, Research T. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020. doi: 10.1056/NEJMoa2001017. PubMed PMID: 31978945.
- 2.↵Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020. Epub 2020/02/06. doi: 10.1038/s41586-020-2012-7. PubMed PMID: 32015507.
- 3.↵Gallagher TM, Buchmeier MJ. Coronavirus spike proteins in viral entry and pathogenesis. Virology. 2001;279(2):371–4. doi: 10.1006/viro.2000.0757. PubMed PMID: 11162792.
- 4.↵Simmons G, Zmora P, Gierer S, Heurich A, Pohlmann S. Proteolytic activation of the SARS-coronavirus spike protein: cutting enzymes at the cutting edge of antiviral research. Antiviral Res. 2013;100(3):605–14. doi: 10.1016/j.antiviral.2013.09.028. PubMed PMID: 24121034; PMCID: PMC3889862.
- 5.↵Belouzard S, Chu VC, Whittaker GR. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc Natl Acad Sci U S A. 2009;106(14):5871–6. doi: 10.1073/pnas.0809524106. PubMed PMID: 19321428; PMCID: PMC2660061.
- 6.↵Li F, Li W, Farzan M, Harrison SC. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science. 2005;309(5742):1864–8. doi: 10.1126/science.1116480. PubMed PMID: 16166518.
- 7.↵Millet JK, Whittaker GR. Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis. Virus Res. 2015;202:120–34. doi: 10.1016/j.virusres.2014.11.021. PubMed PMID: 25445340; PMCID: PMC4465284.
- 8.↵Simmons G, Gosalia DN, Rennekamp AJ, Reeves JD, Diamond SL, Bates P. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc Natl Acad Sci U S A. 2005;102(33):11876–81. doi: 10.1073/pnas.0505577102. PubMed PMID: 16081529; PMCID: PMC1188015.
- 9.↵Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough TC, Choe H, Farzan M. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426(6965):450–4. doi: 10.1038/nature02145. PubMed PMID: 14647384.
- 10.Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, Huan Y, Yang P, Zhang Y, Deng W, Bao L, Zhang B, Liu G, Wang Z, Chappell M, Liu Y, Zheng D, Leibbrandt A, Wada T, Slutsky AS, Liu D, Qin C, Jiang C, Penninger JM. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med. 2005;11(8):875–9. doi: 10.1038/nm1267. PubMed PMID: 16007097.
- 11.↵Hoffmann M, Kleine-Weber H, Krüger N, Müller M, Drosten C, Pöhlmann S. The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells. bioRxiv. 2020.
- 12.↵Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh C-L, Abiona O, Graham BS, McLellan JS. Cryo-EM Structure of the 2019-nCoV Spike in the Prefusion Conformation. bioRxiv. 2020.
- 13.↵Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, Donovan M, Woolf B, Robison K, Jeyaseelan R, Breitbart RE, Acton S. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res. 2000;87(5):E1–9. doi: 10.1161/01.res.87.5.e1. PubMed PMID: 10969042.
- 14.Zhang H, Kang Z, Gong H, Xu D, Wang J, Li Z, Cui X, Xiao J, Meng T, Zhou W, Liu J, Xu H. The digestive system is a potential route of 2019-nCov infection: a bioinformatics analysis based on single-cell transcriptomes. bioRxiv. 2020.
- 15.↵Zhao Y, Zhao Z, Wang Y, Zhou Y, Ma Y, Zuo W. Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019-nCov. bioRxiv. 2020.
- 16.↵Crackower MA, Sarao R, Oudit GY, Yagil C, Kozieradzki I, Scanga SE, Oliveira-dos-Santos AJ, da Costa J, Zhang L, Pei Y, Scholey J, Ferrario CM, Manoukian AS, Chappell MC, Backx PH, Yagil Y, Penninger JM. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature. 2002;417(6891):822–8. doi: 10.1038/nature00786. PubMed PMID: 12075344.
- 17.Raizada MK, Ferreira AJ. ACE2: a new target for cardiovascular disease therapeutics. J Cardiovasc Pharmacol. 2007;50(2):112–9. doi: 10.1097/FJC.0b013e3180986219. PubMed PMID: 17703127.
- 18.↵Zisman LS, Keller RS, Weaver B, Lin Q, Speth R, Bristow MR, Canver CC. Increased angiotensin-(1-7)-forming activity in failing human heart ventricles: evidence for upregulation of the angiotensin-converting enzyme Homologue ACE2. Circulation. 2003;108(14):1707–12. doi: 10.1161/01.CIR.0000094734.67990.99. PubMed PMID: 14504186.
- 19.↵Zhang H, Wada J, Hida K, Tsuchiyama Y, Hiragushi K, Shikata K, Wang H, Lin S, Kanwar YS, Makino H. Collectrin, a collecting duct-specific transmembrane glycoprotein, is a novel homolog of ACE2 and is developmentally regulated in embryonic kidneys. J Biol Chem. 2001;276(20):17132–9. doi: 10.1074/jbc.M006723200. PubMed PMID: 11278314.
- 20.↵Hamming I, Cooper ME, Haagmans BL, Hooper NM, Korstanje R, Osterhaus AD, Timens W, Turner AJ, Navis G, van Goor H. The emerging role of ACE2 in physiology and disease. J Pathol. 2007;212(1):1–11. doi: 10.1002/path.2162. PubMed PMID: 17464936.
- 21.↵Towler P, Staker B, Prasad SG, Menon S, Tang J, Parsons T, Ryan D, Fisher M, Williams D, Dales NA, Patane MA, Pantoliano MW. ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis. J Biol Chem. 2004;279(17):17996–8007. doi: 10.1074/jbc.M311191200. PubMed PMID: 14754895.
- 22.↵Song W, Gui M, Wang X, Xiang Y. Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. PLoS Pathog. 2018;14(8):e1007236. doi: 10.1371/journal.ppat.1007236. PubMed PMID: 30102747; PMCID: PMC6107290.
- 23.↵Kirchdoerfer RN, Wang N, Pallesen J, Wrapp D, Turner HL, Cottrell CA, Corbett KS, Graham BS, McLellan JS, Ward AB. Receptor binding and proteolysis do not induce large conformational changes in the SARS-CoV spike. bioRxiv. 2018.
- 24.↵Kowalczuk S, Broer A, Tietze N, Vanslambrouck JM, Rasko JE, Broer S. A protein complex in the brush-border membrane explains a Hartnup disorder allele. FASEB J. 2008;22(8):2880–7. doi: 10.1096/fj.08-107300. PubMed PMID: 18424768.
- 25.↵Seow HF, Broer S, Broer A, Bailey CG, Potter SJ, Cavanaugh JA, Rasko JE. Hartnup disorder is caused by mutations in the gene encoding the neutral amino acid transporter SLC6A19. Nat Genet. 2004;36(9):1003–7. doi: 10.1038/ng1406. PubMed PMID: 15286788.
- 26.↵Kleta R, Romeo E, Ristic Z, Ohura T, Stuart C, Arcos-Burgos M, Dave MH, Wagner CA, Camargo SR, Inoue S, Matsuura N, Helip-Wooley A, Bockenhauer D, Warth R, Bernardini I, Visser G, Eggermann T, Lee P, Chairoungdua A, Jutabha P, Babu E, Nilwarangkoon S, Anzai N, Kanai Y, Verrey F, Gahl WA, Koizumi A. Mutations in SLC6A19, encoding B0AT1, cause Hartnup disorder. Nat Genet. 2004;36(9):999–1002. doi: 10.1038/ng1405. PubMed PMID: 15286787.
- 27.↵Broer A, Klingel K, Kowalczuk S, Rasko JE, Cavanaugh J, Broer S. Molecular cloning of mouse amino acid transport system B0, a neutral amino acid transporter related to Hartnup disorder. J Biol Chem. 2004;279(23):24467–76. doi: 10.1074/jbc.M400904200. PubMed PMID: 15044460.
- 28.↵Penmatsa A, Wang KH, Gouaux E. X-ray structure of dopamine transporter elucidates antidepressant mechanism. Nature. 2013;503(7474):85–90. doi: 10.1038/nature12533. PubMed PMID: 24037379; PMCID: PMC3904663.
- 29.↵Coleman JA, Green EM, Gouaux E. X-ray structures and mechanism of the human serotonin transporter. Nature. 2016;532(7599):334–9. doi: 10.1038/nature17629. PubMed PMID: 27049939; PMCID: PMC4898786.
- 30.↵Yan R, Zhao X, Lei J, Zhou Q. Structure of the human LAT1-4F2hc heteromeric amino acid transporter complex. Nature. 2019. doi: 10.1038/s41586-019-1011-z. PubMed PMID: 30867591.
- 31.↵Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE, Ksiazek TG, Seidah NG, Nichol ST. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J. 2005;2:69. doi: 10.1186/1743-422X-2-69. PubMed PMID: 16115318; PMCID: PMC1232869.
- 32.↵Lee Y, Wiriyasermkul P, Jin C, Quan L, Ohgaki R, Okuda S, Kusakizako T, Nishizawa T, Oda K, Ishitani R, Yokoyama T, Nakane T, Shirouzu M, Endou H, Nagamori S, Kanai Y, Nureki O. Cryo-EM structure of the human L-type amino acid transporter 1 in complex with glycoprotein CD98hc. Nat Struct Mol Biol. 2019;26(6):510–7. doi: 10.1038/s41594-019-0237-7. PubMed PMID: 31160781.
- 33.↵Shulla A, Heald-Sargent T, Subramanya G, Zhao J, Perlman S, Gallagher T. A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry. J Virol. 2011;85(2):873–82. doi: 10.1128/JVI.02062-10. PubMed PMID: 21068237; PMCID: PMC3020023.
- 34.↵Heurich A, Hofmann-Winkler H, Gierer S, Liepold T, Jahn O, Pohlmann S. TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. J Virol. 2014;88(2):1293–307. doi: 10.1128/JVI.02202-13. PubMed PMID: 24227843; PMCID: PMC3911672.
Prenumerera på:
Inlägg (Atom)