Leta i den här bloggen

tisdag 31 mars 2020

Italian pandemianhoitokokemuksia

https://onlinelibrary.wiley.com/doi/full/10.1111/anae.15049

Original Article
Free Access

The Italian coronavirus disease 2019 outbreak: recommendations from clinical practice

First published: 27 March 2020
https://doi.org/10.1111/anae.15049
Extreme measures have already been undertaken, including: closure of hospital wards; restricting visitor access to hospital; identification of external triage areas; dedicated patient transport and isolation pathways; and cessation of elective surgery, with only emergency, trauma and selected oncological surgery proceeding. Notably, operating rooms are allocated as emergency critical care beds and anaesthetists have been re‐allocated to critical care management and rapid response emergency care, including dedicated COVID‐19 emergency teams to assist patients in non‐critical care settings. In terms of public health, several measures have been implemented, including: the use of telemedicine consultations; domestic isolation of COVID‐19 patients who are not severely unwell; production and distribution of educational videos and television segments; and firm restrictions against public gatherings. Most recently, much of northern Italy had a quarantine imposed, affecting up to 16 million residents 19, and on 11 March 2020, all Italian territories were identified as ‘red zones’ by the Government, with firm restrictions on any public activity 20.
The acuity of the epidemic burden on healthcare infrastructure has also led to the identification of certain hospitals as ‘COVID‐19 sanatoriums,’ and we forecast a possible future of ‘COVID‐19 positive’ and ‘COVID‐19 negative’ hospitals. Finally, there has been activation of military forces to construct field hospitals with bio‐containment level resources. The role of anaesthetists and intensivists has been critical, complex and dynamic. They have been directly responsible for the early clinical management of critically ill patients, and have faced the hardest task of undertaking critical, ethically and psychologically disrupting triage, unavoidable though it may be. To support clinicians with these ethical decisions, The Società Italiana di Anestesia Analgesia Rianimazione e Terapia Intensiva (SIAARTI) produced guidance on clinical management and triage during the crisis 21.

Clinical management

Specific aspects of COVID‐19 patient care distinguish it from routine clinical practice (Table 2). In these settings, there are factors that must be considered for: oxygen administration and non‐invasive ventilation of the spontaneously ventilating patient; airway management of the patient requiring tracheal intubation; clinical management with PPE; and human factors

Table 2. Clinical aspects of COVID‐19 patients during the Italian outbreak. Preliminary observations based on data from Gruppo Italiano per la Valutazione degli Interventi in Terapia Intensiva; http://giviti.marionegri.it)
Typical patient characteristics
Age 60–70 years
Sex Male
Most common comorbidity Obesity
Typical investigation findings
Procalcitonin < 0.15 ng.ml−1 (normal)
Brain natriuretic peptide < 100 pg.ml−1 (normal)
Creatine phosphokinase Elevated, particularly in younger patients
Albumin Reduced
Lymphocytes Reduced
Chest X‐ray features Bilateral interstitial pneumonitis
CT chest features Parenchymal and interstitial involvement
Lung ultrasound Diffuse B‐lines may indicate those who respond to high PEEP.
Anterior lung regions aerated or posterior atelectasis may indicate those who respond to prone positioning
Possible treatments and therapies
Antiretrovirals Lopinavir or ritonavir
Other agents Choroquine or hydroxychloroquine
Antibiotic prophylaxis Piperacillin/tazobactam or ceftriazone or trimethoprim/sulfamethoxazole
Secretion management N‐acetylecysteine
Other pharmacological agents Corticosteroids or immune suppression, for example, tocilizumab
Sedation Deep
Ventilation Lung‐protective ventilation with high PEEP. Compliance is usually good.
Neuromuscular blockade Deep, particularly during prone positioning
Fluid balance Negative
Positioning Consider up to seven cycles of prone positioning
Extracorporeal membrane oxygenation Rarely used, but might be considered for those unresponsive to conventional ventilation
Renal replacement therapy Challenging
  • COVID‐19, coronavirus disease 2019.

Oxygen administration

Given the aggressive pulmonary involvement associated with COVID‐19, the requirement for non‐invasive or invasive oxygen therapy is likely. All oxygen administration strategies in the spontaneously ventilating patient carry risks of aerosolisation and disease transmission. Hudson and Venturi masks, nasal cannulae and helmets, carry a lower‐risk of transmission when compared with high‐flow nasal oxygen and non‐invasive ventilation (NIV) with facemasks or hoods 22. Data from the SARS 23 and MERS 24 outbreaks cautioned against the use of high‐flow nasal oxygen or non‐invasive ventilation, although this has recently been countered by data demonstrating no increased dissemination of bacteria with high‐flow nasal oxygen, yet viral spread remains unexplored 25. As well as the potential risk of viral aerosolisation and the need for careful isolation precautions, non‐invasive ventilation may also be insufficient to manage COVID‐19‐induced respiratory failure, and preliminary observations from the current Italian outbreak suggest there may be a poor response to non‐invasive ventilation 3, 23, 25-27.
Delaying avoidable tracheal intubation may be beneficial 28, but delaying unavoidable tracheal intubation is a significant concern 27. Invasive ventilation is associated with reduced aerosolisation and is thus safer for staff and other patients. That said, it might also be associated with hypoxia, haemodynamic failure and cardiac arrest 29, 30 during tracheal intubation, and a risk of staff exposure to high viral load secretions, given that the very act of tracheal intubation is associated with the greatest risk of exposure to healthcare professionals 31. Patient triage based on expected prognostic outcomes has become increasingly important. Thus, early tracheal intubation is encouraged, as late or emergency tracheal intubation in rapidly deteriorating patients may be associated with greater risks, both to patients and healthcare professionals.
Ethical burden and moral distress have been emerging factors in the Italian outbreak, like that already seen in Wuhan. Invasive ventilation must account for available personnel and critical care beds, which have become rapidly saturated as our daily experience is showing, with 650 COVID‐19 patients in critical care settings in Italy on 8 March 2020 32. Alternatives to tracheal intubation might reduce the demand on critical care beds. Multidisciplinary evaluation, co‐operation and decision‐making are strongly advised during this evolving and highly dynamic crisis.

Airway management

Protocols and experiences in airway management for this and other coronavirus outbreaks 3, 23, 33-35, as confirmed by our ongoing experience in Italy, is a necessity to rigorously prepare for airway management. This includes utilisation of cognitive aids such as checklists, cross‐checking and pre‐planned and explicitly defined airway management strategies 36. Any airway management procedure should be managed electively rather than as an emergency, and any means to maximise first‐pass success should be adopted. Procedures should be performed in a negative pressure chamber (if available) or isolation area that is equipped with a replenished, complete and checked emergency airway trolley. Entry and departure of staff from the immediate clinical area must be strictly monitored and restricted to those who are required. Thorough airway assessment should guide clinicians to determine the safety of asleep tracheal intubation, rather than awake tracheal intubation (ATI) 37, 38. Clinicians must note that ATI is potentially a highly aerosol‐generating procedure, thus the decision to undertake ATI must be carefully considered.

Tracheal intubation

Patients with COVID‐19 are at risk of rapid arterial oxygen desaturation, and therefore effective pre‐oxygenation is mandatory. After pre‐emptive optimisation and correction of haemodynamic disturbances, pre‐oxygenation with a fraction of inspired oxygen of 1.0 for at least 3 min at tidal volume breathing or eight vital capacity breaths should be carried out 39. Rapid sequence intubation is indicated for all cases to minimise the apnoea time during which significant aerosolisation can occur with facemask ventilation. Therefore, facemask ventilation should only be performed gently in the event of critical arterial oxygen desaturation 40. In order to maximise first‐pass success and not compromise optimal ventilation (if needed), cricoid force should not be performed, unless there are other indications 41, 42. Apnoeic oxygenation is recommended to prevent desaturation 43, ideally with low‐flow nasal oxygenation during tracheal intubation attempts. Despite the benefits of high‐flow nasal oxygen 44, it is an aerosol‐generating technique, particularly when the airway operator is in close proximity to the patient, and should be avoided.
Cautious administration of general anaesthetic agents is recommended to minimise haemodynamic instability, and rocuronium 1.2 mg.kg−1 or suxamethonium 1 mg.kg−1 should be given to ensure rapid onset of neuromuscular blockade, maximise first‐pass success 45 and prevent coughing and associated aerosolisation. Neuromuscular monitoring is advisable. The most skilled and experienced airway operator should perform airway instrumentation, and all conditions should be optimised to ensure the highest chance of first‐pass tracheal intubation success. We strongly recommend the use of a videolaryngoscope, which would ideally be disposable but with a separate screen to minimise patient contact. Pre‐loading an appropriately‐sized tracheal tube on an introducer is also advised, as this may also improve the first‐pass success rate 46.
In the event of a failed tracheal intubation, gentle manual ventilation may be used, followed by a maximum of two attempts at tracheal intubation (with consideration of change in position, device and technique between attempts). After two failures, or any time if a rescue airway is needed, a second generation supraglottic device is strongly advised. Supraglottic airway devices that allow flexible bronchoscopic intubation are preferable 47. An early emergency front‐of‐neck airway (surgical or percutaneous cricothyroidotomy) should be considered before a ‘cannot intubate, cannot oxygenate’ scenario independently of critical arterial oxygen desaturation 36.
If ATI is indicated, 37, 38, an experienced operator should perform it 48, 49 and administration of intravenous sedation may minimise coughing 50. Aerosol or vaporised delivery of local anaesthesia should be minimised, and consideration given to the use of mucosal atomisers, swabs and tampons, and if clinical expertise permits, nerve blocks. Ultrasound‐guided techniques could be adopted, though they might be time‐consuming and carry challenges in terms of decontamination. Single‐use flexible bronchoscopes should be used as they are associated with a reduced risk of cross‐contamination 51, and a separate screen is strongly advised. The diameter of the tracheal tube should be the smallest appropriate to reduce the risk of tube impingement on the arytenoids with consequent coughing. Awake tracheal intubation with videolaryngoscopy is faster than with flexible bronchoscopy and could be considered 52. In the event of failed ATI, tracheostomy with local anaesthesia is a viable alternative and must be considered, despite the potential for aerosolisation 31. Should a ‘cannot intubate, cannot oxygenate’ scenario occur, an emergency front‐of‐neck airway should be performed with the aforementioned principles.
Emergency tracheal intubation may be required for COVID‐19 patients. This setting increases risks to patients and healthcare workers and is often performed outside of the operating theatre or intensive care environment. However, the acuity of airway management should not compromise the safety of clinicians, and thus team members must have PPE donned before commencing airway management. This could require the delivery of gentle facemask ventilation in a hypoxic patient to buy time for the patient and treating clinicians. Principles of airway management in emergencies are like those in more controlled settings.
After successful tracheal intubation, careful management of the tracheal tube is crucial. Auscultation is not advisable due to the challenges with PPE and the risk of cross‐contamination 23, but confirmation of tracheal tube placement should ideally rely on viewing the tracheal tube pass through the vocal cords, with an appropriate and repeated capnographic trace and chest wall movement. All of the aforementioned considerations need to be adopted for tracheal tube exchange manoeuvres, and strategies for protected extubation should be addressed, especially after prolonged tracheal intubation or documented difficult airway management 53. High‐efficiency particulate air filters should be placed between the primary airway device and the breathing circuit, including the expiratory limb of the circuit once the patient is connected to the ventilator 54. To prevent viral dispersion, unnecessary respiratory circuit disconnections are discouraged. If disconnection is required, patient sedation should be optimised to prevent coughing, the ventilator should be turned to stand‐by mode and the tracheal tube clamped (Fig. 1).
image
Società Italiana di Anestesia Analgesia Rianimazione e Terapia Intensiva guidance on airway management of the patient with coronavirus disease 2019.

Non‐technical skills

The management of patients with COVID‐19 places additional physical and psychological burdens on healthcare workers. Physical burdens include repeated donning and doffing of PPE and physical restrictions to routine practice due to PPE. Psychological burdens include: management in unfamiliar environments; communication challenges with PPE; and changes to standard practice. Identification of suitable environments for airway management, team briefing and co‐ordination, task assignment and briefings, team training and the use of checklists and cognitive aids are all crucial to reduce physical and cognitive work‐loads (Fig. 1).
To reduce physical risks, consideration of predefined roles and ergonomics is imperative. There should be an independent practitioner observing the donning and doffing of PPE 23, 55. Only the most experienced healthcare workers with full PPE should be present inside the isolation chamber. Suggested team assignments, utilised in our clinical practice during this current crisis, include an inner isolated chamber and an outer chamber (Fig. 2). In the isolated chamber, all staff should have full PPE donned. Outside of the chamber, additional PPE and other members of staff are available.
image
Suggested team roles and ergonomics for elective tracheal intubation.

Personal protective equipment

Coronaviruses are typically found in the lower respiratory tract linked with angiotensin converting enzyme receptors, with the primary mechanism of transmission through contact and droplet spread of respiratory secretions, which travel up to 2 m 10. The importance of PPE cannot be overstated, but clinicians must also be aware that effectiveness is rarely 100% 3. Moreover, experiences in Italy have demonstrated that supplies of PPE are unlikely to meet demand, thus the use of centralised storage and distribution of PPE is recommended as well as considering the preparation of dedicated PPE kits in keeping with WHO recommendations 17.
One of the key supply restrictions is that of appropriate filtering face piece (FFP) masks. These are different to conventional masks such as surgical masks as they create a facial seal, filtering the air with different filter capacities (Table 3). Although 2019‐nCoV has a size of 0.06–0.14 μm, the virus is carried with droplets that are larger than 0.3 μm, and therefore facial respirator masks with a filter against particles sized > 0.3 μm are appropriate.
Table 3. Filtering face piece (FFP) protection levels. FFP2, N95 and FFP3 masks are recommended for the management of COVID‐19 patients
Filter standard Filter capacity (removal percentage of all particles ≥ 0.3 µm
FFP1 80%
FFP2 94%
N95 95%
FFP3 99%
N100 99.97%
  • COVID‐19, coronavirus disease 2019.
The levels of protection for airway management in COVID‐19 patients adopted in most of hospitals in Italy are either second‐ or third‐level PPE, preferring the use of airborne‐level PPEs for critical care aeorsol‐generating procedures, including tracheal intubation, bronchoscopy and ATI. So far, the outbreak‐related global PPE shortage has forced the use of lower‐protection PPEs for aeorsol‐generating procedures. Airborne‐level protection should include: helmets, covers or hoods; FFP3 or FFP2/N95 masks, goggles or face shields (if no helmets); hazmat suits or long sleeved fluid‐resistant gowns; double gloves (possibly different colours); and overshoes. Whenever possible, the maximum available protection level should be used, especially for aeorsol‐generating procedures.
Donning and doffing of PPE should be practiced and when performed clinically, an external observer should supervise its meticulous performance in accordance with checklists 23. In our experience, PPE donning and doffing presents the greatest challenge to daily working. In particular, doffing of PPE, especially when clinicians are tired and cognitively overloaded, is associated with the greatest risk of contamination. Team members should doff PPE individually and one at a time. Cycles of thorough hand disinfection must be undertaken and supervised, and meticulous waste disposal must be completed.

Transport

Local protocols should be designed for post‐procedural transport of patients with PPE and biocontainment procedures strictly adhered to 55. This must factor staff and public safety during transport.

Briefing, debriefing and training

Pre‐procedural briefing and post‐procedural debriefing are mandatory to review errors and determine improvements for future practice. Team‐based simulation and training remains critical throughout the evolution of this pandemic, involving any level of healthcare professionals 56. The development of local protocols and checklists, development and adoption of dedicated early warning scores 57, and accounting for regional variation in practice, is strongly recommended given the number of clinicians involved, as well as the risks to healthcare professionals.

Conclusion

We have faced many challenges with the onset of the COVID‐19 outbreak throughout Italy and it is likely that other countries will face similar challenges in the coming weeks and months. We have shared systemic and clinical knowledge and experiences gained during the course of the Italian outbreak, with the aims of educating and supporting clinicians elsewhere in the global healthcare community who may face similar scenarios. Only with appropriate informed planning, training and team working will healthcare systems be best placed to face this new pandemic.

onsdag 25 mars 2020

Caspase-1 ( Wikipedia tietoa). Gasdermiini D aukkoja

https://en.wikipedia.org/wiki/Caspase_1
pelkkä kaspaasi-1 näyttää riittävän  Gasdermiinin pilkkoamiseen.
intgerleukiinit  IL-1b ja IL-18  eivät ilmeisesti  vaikuta siihen  GasdermiiniD- aukon tekemiseen vaan niiden  ilmeneminen tapahtuu sen aukon avulla. Jos aukkoa ei mudoostu, ne jäävät solun sisään. erään tiedon mukaan. Siis olennaista on kaspaasi-1.n aktivoituminen gasdermiini D kanavan muodostumiseen pikkuhiljaa.  Miten hanakasti se tukee pelkkää kanavaa ilman ilman monomeerin löytämää  kohdetta, esim bakteeria tai parasiitti? Siis pelkän solustressin takia viruksen ollessa sille näkymätön.  Kanava sinänsä on  edullinen virukselle, koska sen omat kanavat ovat pieniä ja ehkä niisä lie vielä jotain joniselektiivisyytäkin. tässä  kun ei ole joniselektiivisyyttä vaan se hävittää   membraanipotentiaalin tarvitsemat jonitasapainot   nopeasti ja päästää  vettä  soluun.
Se on tosiaan huomionarvoinen  kohde tällä kertaa.  Siitä tuleva tieto on aika tuoretta, viime joulukuulta  ja muutenkin vain parilta viime vuodelta on enemmän tietoa.

https://www.embopress.org/doi/abs/10.15252/embj.201798321

 Huom  kuvan pyörylät ovat gasdermiiniaukkoja eikä viruksia!
Abstract
Gasdermin‐D (GSDMD), a member of the gasdermin protein family, mediates pyroptosis in human and murine cells. Cleaved by inflammatory caspases, GSDMD inserts its N‐terminal domain (GSDMDNterm) into cellular membranes and assembles large oligomeric complexes permeabilizing the membrane. So far, the mechanisms of GSDMDNterm insertion, oligomerization, and pore formation are poorly understood. Here, we apply high‐resolution (≤ 2 nm) atomic force microscopy (AFM) to describe how GSDMDNterm inserts and assembles in membranes. We observe GSDMDNterm inserting into a variety of lipid compositions, among which phosphatidylinositide (PI(4,5)P2) increases and cholesterol reduces insertion. Once inserted, GSDMDNterm assembles arc‐, slit‐, and ring‐shaped oligomers, each of which being able to form transmembrane pores. This assembly and pore formation process is independent on whether GSDMD has been cleaved by caspase‐1, caspase‐4, or caspase‐5. Using time‐lapse AFM, we monitor how GSDMDNterm assembles into arc‐shaped oligomers that can transform into larger slit‐shaped and finally into stable ring‐shaped oligomers. Our observations translate into a mechanistic model of GSDMDNterm transmembrane pore assembly, which is likely shared within the gasdermin protein family.'

 image

Gasdermiini D:n osuus COVID-19 tulehduksissa

Kerään tähän linkkiä Gasdermiinin osuudesta:
Tässä mainitaan että  sensoriteitse esim  solustressistä aktivoitunut Gasdermiinin kehittyminen  antaisi signaalina IL-1beta ja IL 18. 
Katson onko niistä mainintaa jossain.
https://ars.els-cdn.com/content/image/1-s2.0-S2319417017302780-gr1_lrg.jpg 
Nikotiini aiheuttaa niitä:  https://www.ncbi.nlm.nih.gov/pubmed/31835256

Viroporiinista  mainitaan  että se aktivoi inflammasomin ja aiheuttaa mainitut interleukiinit ... siis aika varhain.  Viroporiinin aiheuttama  solustressi ja  kalsiumin ja muiden jonien epätasapaino tunnistuu, vaikka  virusgenomia ei havaittaisikaan ja tässä käsittääkseni  GSDMD  pääsee  vähitellen myös raekntamaan sen lisäaukon kun gasdermin D myös pilkkoutuu  . Riittääkö sen pilkkoamiseen pelkkä kaspaasi -1? Ilmeisesti riittää, mutta  varmastikin  nopeammin tapahtuu  sen muodostuminen jos on myös TLR- tietä  tapahtunutta kaspaasien muodostusta lisäksi.   Viroporiinin aukko ei voi olla kovin suuri, muta kun viroporiini on  aktivoinut inflammasomin ja saanut aikaan  gasdermiiniaukkojen muodostuksen,  Nesteaukot  10-14 nm  toimivat   ilman jonisensitiivisyyttä ja  vettä tulvii soluun  ja solu paisuu, samalla solusta virtaa  tekijöitä ulos. Ilmeiseti virus  kaapaa tämän solun  puolustusfunktion  stressireaktiovälitteisesti.  Tuo iso kanava on tarkoitettu  isompien mikrobien esim EHEC  ym , bakteereiden ja parasiittien pois saamiseksi solusta ja  tappamiseksi  niin solun sisällä kuin solun ulkopuolella. Sen takia  GasderminD  omaa  pätevän pääsyn kaikkiin solukalvoihin, sen kohdemolekyylit ovat fosfoinositolilipidit , fosfatidyyliseriini ( plasmamembraanin sisäkalvossa, , fosfatidyylietanolamini kalvon sisä-keskiosissa,  fosfotidihappo (sytoplasmassa) ja jopa kardiolipiini, jota on vain mitokondrian sisäkalvoissa.  Lisäksi  se tekee interaktion niihin  fosfatidyyliinositolimuotoihin joita  tuman sisäpuolella ensisijaisesti  valitaan ( muotoja joissa  on  4 tai 5 aseman fosfaatti).   Gasdermin D  molekyylin N-terminaaliset osat  puhkaisevat reikiä  soluun  solutilojen  sisäpuolelta  noudattaen  lipidikerrosten lipidien hierarkiaa.   Aluksi varmaan vain pieni reikä, josta vesi pääsee soluun, kaliumit ulos, kalsiumia sisään ja niin  turvottamaan solun pyöreäksi mikä jo mekaanisesti levittää kanavaa.

https://www.ncbi.nlm.nih.gov/pubmed/32156572
2020 Mar 7;122:105738. doi: 10.1016/j.biocel.2020.105738. [Epub ahead of print]

Viroporins and inflammasomes: A key to understand virus-induced inflammation.

Abstract

Viroporins are virus encoded proteins that alter membrane permeability and can trigger subsequent cellular signals. Oligomerization of viroporin subunits results in formation of a hydrophilic pore which facilitates ion transport across host cell membranes. These viral channel proteins may be involved in different stages of the virus infection cycle.

Inflammasomes are large multimolecular complexes best recognized for their ability to control activation of caspase-1, which in turn regulates the maturation of interleukin-1 β (IL-1β) and interleukin 18 (IL-18). IL-1β was originally identified as a pro-inflammatory cytokine able to induce both local and systemic inflammation and a febrile reaction in response to infection or injury. Excessive production of IL-1β is associated with autoimmune and inflammatory diseases.

Microbial derivatives, bacterial pore-forming toxins, extracellular ATP and other pathogen-associated molecular patterns trigger activation of NLRP3 inflammasomes.

Recent studies have reported that viroporin activity is capable of inducing inflammasome activity and production of IL-1β, where NLRP3 is shown to be regulated by fluxes of K+, H+ and Ca2+ in addition to reactive oxygen species, autophagy and endoplasmic reticulum stress. The aim of this review is to present an overview of the key findings on viroporin activity with special emphasis on their role in virus immunity and as possible activators of inflammasomes.

KEYWORDS:

Inflammasomes; Inflammation; NLRP3; Viroporins; Virus-immunity
PMID:
32156572
DOI:
10.1016/j.biocel.2020.105738

tisdag 24 mars 2020

NLRP3 ja Tyypin I interferonit

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3824101/

ARDS (lyhytvideo, ruots)

https://www.youtube.com/watch?v=gmg0JXE8lng

Eräs selvittämätön seikka uudessa Coronaviruksessa SARS2

https://cellandbioscience.biomedcentral.com/articles/10.1186/s13578-020-00404-4 
On nimittäin josain mielessä  havaittu SARS CoV2002  pahemmaksi kuin  nykyinen SARS CoV 2-2019, vaikka  minusta  sen tappavuus ei kyllä mikään  " vähempi patogeenisuus" mielestäni ollenkaan.  koska virus on hankkinut sen pandemisen kykynsä tässä aikojen kuluessa.
Kuitenin sanotaan että SARS 1 tekijöillään ORF3a ja ORF8b  indusoi  NLRP3 inflammasomia samoja  ORF.eja taas  ei niissä muodoissaan ole tässä viruksessa, sen sijaan uudella viruksella on jokin lisä proteiinipätkäkin  näistä  ORF-alueista eikä  tiedetä niiden  funktiosta kovin paljoja.  Ne ovat varmaan nsp- kaltaisia tekijöitä.  ja maintiaan vain "ORF3" ja " ORF8"oletettavaa on , että ne tehostavat  kaikkien 16 tunnetun  polyproteiiniperäisen nsp:n monipuolista  funktiota ehkä  viruksen virioninkehittämisohjelman ajoituksessa  tarvitavaia tekijöitä.  Koko  nsp-kirjo on ajoituksesta suuresti riippuvaista.  vähän tyrmäystaktiikalla, hyvä alkutyrmäys ja sitten  työrauhaa vikkelään toimintaan.  En oikeiastaan vielä odotakaan löytäväni karttoja  uuden viruksen vaikutuksesta inflammasomitasoon. muta koetan löytää ensin karttoja  ja tekstejä  vanhoissta SARS- viruksista inflammasomiympäristössä. .

  • The ninth question concerns why SARS-CoV-2 is less pathogenic. If the reduced pathogenicity of SARS-CoV-2 is the result of adaptation to humans, it will be of great importance to identify the molecular basis of this adaptation. The induction of a cytokine storm is the root cause of pathogenic inflammation both in SARS and COVID-19. SARS-CoV is known to be exceedingly potent in the suppression of antiviral immunity and the activation of proinflammatory response. It is therefore intriguing to see how SARS-CoV-2 might be different from SARS-CoV in interferon-antagonizing and inflammasome-activating properties. It is noteworthy that some interferon antagonists and inflammasome activators encoded by SARS-CoV are not conserved in SARS-CoV-2. Particularly, ORF3 and ORF8 in SARS-CoV-2 are highly divergent from ORF3a and ORF8b in SARS-CoV that are known to induce NLRP3 inflammasome activation. ORF3 of SARS-CoV-2 is also significantly different from the interferon antagonist ORF3b of SARS-CoV. Thus, these viral proteins of SARS-CoV and SARS-CoV-2 should be compared for their abilities to modulate antiviral and proinflammatory responses. The hypothesis that SARS-CoV-2 might be less efficient in the suppression of antiviral response and the activation of NLRP3 inflammasome should be tested experimentally.


Selaillessani  KARTTOJA INFLAMMASOMISTA HAVAITSIN YHDEN ARTIKKELIN JOSSA OLI  ASSOSIOITU Covid-19  ja  NLRP3  MYÖS KUTEN  AIEMMIN ASSOSIOITIIN   Sars coV ja NLRP3.
Luin artikkelin. se vaikuttaa yhden henkilön teorialta.
 https://www.evolutamente.it/category/doris-loh/Tässä on sarja  näitä  eri näkökohtia. Otan sen  NLRP3:n yhteydessä  mainitun kohdan. Yllätyksekseni se assosioidaan melatoniiniin.
Monessa kohtaa olen samaa mieltä, patisi   ACEI ja ARb lääkityksen suhteen, koska ne eivät kohdistu entsyymi ACE2- molekyyliin ollenkaan ja ovat mielestäni  hyödyksi koska mahdollisesti kehittyy hypoertensiota jos ACE2- molekyyliä pääsee paljon tuhtuumaan ja ACE-entsyymi  pääsee vallalle , ja  juuri  sitä ylivaltaa  vastaan ACEI ja ARB ovatkin, järjestelmän  vasokonstrikipuolen ylisäätymistä vastaan, ACE2  vastaa dilataatiofunktiosta.  Hyvä maininta on NO, sillä  se kuuluu RAAS järjestelmään ja verisuoniston  tilavuuden ylläpitoon.  Mitä tulee Melatoniiniin, mielstäni kaikki  sadat tuhannet karanteeniin määrätyt voivat nostaa melatoniininsa vain nukkumalla yönsä pimeässä huoneessa  ilman  yövaloa.   Melatoniin säätöä tehostaa jos aamulla vilkaisee   valoisaa   ulkoilmaa kun hengittää raikasta aamuilmaa ja tuulettaa keuhkojaan. Melatoniini muodostuu aminohapoista.  ja aivoon  siirtyy aromaattisia (AA)  ja haaraketjuisia (BCAA)  aminohappoa  eli isoja neutraaleja aminohappoja (LNAA)  circadisen rytmin mukaan ja siihen sopii että syö  aamuisi maitoproteiineja aamiaisella, munaa, maitoa, leipää, ym ja keskipäivällä esim  lpapusoppaa, kalaa, linsejä ym  josita tulee runsaasti  näitä  laatuja, sillä niillä on sitten  kilpailunsa  aivoon pääsystä ja  se on tasapainoisinta  vuorokaudelle jos  niitä on syöty päiväsaikaan jo aamusta.  Sitten  on  materiaalia sille  melatoniinia  muodostua pimeässä.  Aminohappojen keskinäisessä  kilpailussa  tryptofaani josta melatoniini lopulta muodostuu,  on  eräänlainen rajoittava tekijä,  sitä on aika vähän joissain ruoissa, että on paras  katsoa  ravintonsa sen verran monipuoliseksi, että sitäkin tulee.  Ei pitäisi harrastaa  proteiinia vain  kaikken maukkaimmassa ja kulinaarisimmassa muodossaan, sillä siinä  arvokkaat aminohapot ovat    monta kertaa pelkkää muistoa omasta  itsestään, eli itsensä aminimuotoja, joista  ei voi rakentaa  kehon proteiinimuotoja.  Sen takia  tuollaiset  kylmät  proteiinit, kuten jogurtit, rahkat, maidot, tuorejuustot, pähkinät, mantelit, hiutaleet, myslit, ovat eduksi. Kananmunakin voi  keittää  vähälläkin ajalla ettei se nyt ole  aivan kivikova tai paistaa niin että se juuri ja juuri muuttuu hyväksi omeletiksi eikä ole mikään   tärkätty ruskeareunainen pitsi.



söndag 22 mars 2020

MERS-CoV ja Bat CoV HKU4 HKU5 kuuluvat betakoronavirusten samaan linjaan 2C.

2015 Sep 1;23(17):6036-48. doi: 10.1016/j.bmc.2015.06.039. Epub 2015 Jun 19.

Targeting zoonotic viruses: Structure-based inhibition of the 3C-like protease from bat coronavirus HKU4--The likely reservoir host to the human coronavirus that causes Middle East Respiratory Syndrome (MERS).

The bat coronavirus HKU4 belongs to the same 2c lineage as that of the deadly Middle East Respiratory Syndrome coronavirus (MERS-CoV) and shows high sequence similarity, therefore potentiating a threat to the human population through a zoonotic shift or 'spill over' event. To date, there are no effective vaccines or antiviral treatments available that are capable of limiting the pathogenesis of any human coronaviral infection. An attractive target for the development of anti-coronaviral therapeutics is the 3C-like protease (3CL(pro)), which is essential for the progression of the coronaviral life cycle. Herein, we report the screening results of a small, 230-member peptidomimetic library against HKU4-CoV 3CL(pro) and the identification of 43 peptidomimetic compounds showing good to excellent inhibitory potency of HKU4-CoV 3CL(pro) with IC50 values ranging from low micromolar to sub-micromolar. We established structure-activity relationships (SARs) describing the important ligand-based features required for potent HKU4-CoV 3CL(pro) inhibition and identified a seemingly favored peptidic backbone for HKU4-CoV 3CL(pro) inhibition. To investigate this, a molecular sub-structural analysis of the most potent HKU4-CoV 3CL(pro) inhibitor was accomplished by the synthesis and testing of the lead peptidomimetic inhibitor's sub-structural components, confirming the activity of the favored backbone (22A) identified via SAR analysis. In order to elucidate the structural reasons for such potent HKU4-CoV 3CL(pro) inhibition by the peptidomimetics having the 22A backbone, we determined the X-ray structures of HKU4-CoV 3CL(pro) in complex with three peptidomimetic inhibitors. Sequence alignment of HKU4-CoV 3CL(pro), and two other lineage C Betacoronaviruses 3CL(pro)'s, HKU5-CoV and MERS-CoV 3CL(pro), show that the active site residues of HKU4-CoV 3CL(pro) that participate in inhibitor binding are conserved in HKU5-CoV and MERS-CoV 3CL(pro). Furthermore, we assayed our most potent HKU4-CoV 3CL(pro) inhibitor for inhibition of HKU5-CoV 3CL(pro) and found it to have sub-micromolar inhibitory activity (IC50=0.54±0.03μM). The X-ray structures and SAR analysis reveal critical insights into the structure and inhibition of HKU4-CoV 3CL(pro), providing fundamental knowledge that may be exploited in the development of anti-coronaviral therapeutics for coronaviruses emerging from zoonotic reservoirs.

KEYWORDS:

3C-like protease; Broad-spectrum inhibitors; Coronavirus; HKU4; HKU5; MERS; Peptidomimetic compounds; Protease inhibitors; SARS; Zoonotic reservoir
PMID:
26190463
PMCID:
PMC5433438
DOI:
10.1016/j.bmc.2015.06.039
[Indexed for MEDLINE]
Free PMC Article

Theofylliini ja riboswitch

https://academic.oup.com/nar/article/44/18/9005/2468359https://academic.oup.com/nar/article/44/18/9005/2468359

Theophylline, also known as 1,3-dimethylxanthine, is a methylxanthine drug used in therapy for respiratory diseases such as chronic obstructive pulmonary disease (COPD) and asthma under a variety of brand names. As a member of the xanthine family, it bears structural and pharmacological similarity to theobromine and caffeine, and is readily found in nature, being present in tea (Camellia sinensis) and cocoa (Theobroma cacao). A small amount of theophylline is one of the products of caffeine metabolic processing in the liver.[1]

https://en.wikipedia.org/wiki/Theophylline

Original Article | Open Access
Volume 2 |Article ID 607278 | 7 pages | https://doi.org/10.1093/ecam/neh081

Inhibition of SARS-CoV 3C-like Protease Activity by Theaflavin-3,3'-digallate (TF3)


Chia-Nan Chen,1 Coney P. C. Lin,1 Kuo-Kuei Huang,1 Wei-Cheng Chen,1 Hsin-Pang Hsieh,1 Po-Huang Liang,2 and John T.-A. Hsu1,3
1Division of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Taipei, Taiwan
2Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
3Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
 

fredag 20 mars 2020

Pleuraffuusiota esiintyy runsaammin refraktorisessa COVID-19 taudissa

https://www.ncbi.nlm.nih.gov/pubmed/32173725
2020 Mar 16. pii: ciaa270. doi: 10.1093/cid/ciaa270. [Epub ahead of print]

Clinical characteristics of refractory COVID-19 pneumonia in Wuhan, China. Mo P1, Xing Y2, Xiao Y2, Deng L1, Zhao Q3, Wang H3, Xiong Y1, Cheng Z4, Gao S1, Liang K1, Luo M1, Chen T1, Song S1, Ma Z1, Chen X1, Zheng R1, Cao Q1, Wang F3, Zhang Y1. Abstract

BACKGROUND:
Since December 2019, novel coronavirus (SARS-CoV-2)-infected pneumonia (COVID-19) occurred in Wuhan, and rapidly spread throughout China. This study aimed to clarify the characteristics of patients with refractory COVID-19.
METHODS:
In this retrospective single-center study, we included 155 consecutive patients with confirmed COVID-19 in Zhongnan Hospital of Wuhan University from January 1st to February 5th. The cases were divided into general and refractory COVID-19 groups according to the clinical efficacy after hospitalization, and the difference between groups were compared.
RESULTS:
Compared with general COVID-19 patients (45.2%), refractory patients had an older age, male sex, more underlying comorbidities, lower incidence of fever, higher levels of maximum temperature among fever cases, higher incidence of breath shortness and anorexia, severer disease assessment on admission, high levels of neutrophil, aspartate aminotransferase (AST), lactate dehydrogenase (LDH) and C-reactive protein, lower levels of platelets and albumin, and higher incidence of bilateral pneumonia and pleural effusion (P<0 .05="" nbsp="" p="">Refractory COVID-19 patients were more likely to receive oxygen, mechanical ventilation, expectorant, and adjunctive treatment including corticosteroid, antiviral drugs and immune enhancer (P<0 .05="" adjustment="" after="" class="highlight" refractory="" span="" those="" with="">COVID-19
were also more likely to have a male sex and manifestations of anorexia and fever on admission, and receive oxygen, expectorant and adjunctive agents (P<0 .05="" admission="" and="" considering="" disease="" factors="" icu="" mechanical="" of="" on="" p="" severity="" the="" transfer.="" ventilation="" when="">CONCLUSION:
Nearly 50% COVID-19 patients could not reach obvious clinical and radiological remission within 10 days after hospitalization. The patients with male sex, anorexia and no fever on admission predicted poor efficacy.


COVID-19; SARS-CoV-2; clinical efficacy; predictors
PMID:
32173725
DOI:
10.1093/cid/ciaa270

Pleuraeffuusio ei ole tavallinen COVID-19 taudin pneumoniassa

2020 Feb 28. doi: 10.1007/s00259-020-04735-9. [Epub ahead of print]

Imaging and clinical features of patients with 2019 novel coronavirus SARS-CoV-2.

BACKGROUND:
The pneumonia caused by the 2019 novel coronavirus (SARS-CoV-2, also called 2019-nCoV) recently break out in Wuhan, China, and was named as COVID-19. With the spread of the disease, similar cases have also been confirmed in other regions of China. We aimed to report the imaging and clinical characteristics of these patients infected with SARS-CoV-2 in Guangzhou, China.
METHODS:
All patients with laboratory-identified SARS-CoV-2 infection by real-time polymerase chain reaction (PCR) were collected between January 23, 2020, and February 4, 2020, in a designated hospital (Guangzhou Eighth People's Hospital). This analysis included 90 patients (39 men and 51 women; median age, 50 years (age range, 18-86 years).

All the included SARS-CoV-2-infected patients underwent non-contrast enhanced chest computed tomography (CT). We analyzed the clinical characteristics of the patients, as well as the distribution characteristics, pattern, morphology, and accompanying manifestations of lung lesions. In addition, after 1-6 days (mean 3.5 days), follow-up chest CT images were evaluated to assess radiological evolution FINDINGS:
The majority of infected patients had a history of exposure in Wuhan or to infected patients and mostly presented with fever and cough.
 More than half of the patients presented bilateral, multifocal lung lesions, with peripheral distribution, and 53 (59%) patients had more than two lobes involved.

 Of all included patients, COVID-19 pneumonia presented with ground glass opacities in 65 (72%), consolidation in 12 (13%), crazy paving pattern in 11 (12%), interlobular thickening in 33 (37%), adjacent pleura thickening in 50 (56%), and linear opacities combined in 55 (61%).
 Pleural effusion, pericardial effusion, and lymphadenopathy were uncommon findings. In addition, baseline chest CT did not show any abnormalities in 21 patients (23%), but 3 patients presented bilateral ground glass opacities on the second CT after 3-4 days.

CONCLUSION:

SARS-CoV-2 infection can be confirmed based on the patient's history, clinical manifestations, imaging characteristics, and laboratory tests. Chest CT examination plays an important role in the initial diagnosis of the novel coronavirus pneumonia. Multiple patchy ground glass opacities in bilateral multiple lobular with periphery distribution are typical chest CT imaging features of the COVID-19 pneumonia.

KEYWORDS:

2019 novel coronavirus pneumonia; COVID-19; Computed tomography; Ground glass opacification; Imaging features; Infection; SARS-CoV-2
PMID:
32107577
DOI:
10.1007/s00259-020-04735-9

KEUHKOT, perustietoa , Intrapleuraalinen lubrikanttineste

Keuhkoja ympäröi  keuhkopussi jossa on kaksilehtinen pleurakalvo. Kahden pleurakalvon välillä on lubrikanttinestettä sisältävä tila,  joka vastaa  fysiologisesta liikkuvuudesta rntakehän seinämän ja keuhkon välillä hengitysliikkeiden aikana.
Koetan löytää tästä lubrikanttinesteestä molekulaarista tietoa. Jos muistellaan vanhoja aikoja, kun tu oli yleinen, tähän tilaan muodostui paljon effusiota, jota sitten tyhjejnnettiin ja josta viljeltiin tubibakteeriakin.
Vanhaa hyvää tietoa ensin  vuodelta 1997

https://www.ncbi.nlm.nih.gov/pubmed/9032518
1997 Jan;10(1):219-25. Physiology and pathophysiology of pleural fluid turnover. Miserocchi G1. Abstract
The pleural space contains a tiny amount (approximately 0.3 mL.kg-1) of hypooncotic fluid (approximately 1 g.dL-1 protein). Pleural fluid turnover is estimated to be approximately 0.15 mL.kg-1.h-1. Pleural fluid is produced at parietal pleural level, mainly in the less dependent regions of the cavity. Reabsorption is accomplished by parietal pleural lymphatics in the most dependent part of the cavity, on the diaphragmatic surface and in the mediastinal regions. The flow rate in pleural lymphatics can increase in response to an increase in pleural fluid filtration, acting as a negative feedback mechanism to control pleural liquid volume. Such control is very efficient, as a 10 fold increase in filtration rate would only result in a 15% increase in pleural liquid volume. When filtration exceeds maximum pleural lymphatic flow, pleural effusion occurs: as an estimate, in man, maximum pleural lymph flow could attain 30 mL.h-1, equivalent to approximately 700 mL.day-1 (approximately 40% of overall lymph flow). Under physiological conditions, the lung interstitium and the pleural space behave as functionally independent compartments, due to the low water and solute permeability of the visceral pleura. Pleural fluid circulates in the pleural cavity and intrapleural fluid dynamics may be represented by a porous flow model. Lubrication between lung and chest wall is assured by oligolamellar surfactant molecules stratified on mesothelial cells of the opposing pleurae. These molecules carry a charge of similar sign and, therefore, repulse each other, assuring a graphite-like lubrication.
Comment in The pleura: the outer space of pulmonary medicine. [Eur Respir J. 1997] PMID: 9032518 DOI: 10.1183/09031936.97.10010219  [Indexed for MEDLINE]  Free full text
mpia tietoja pleuran  mesoteliaalisen joustavuuden parantamisesta  molekulaarisesti lubrikantilla. Jopa  antibiottia, antiviruslääkettä  voidaan asentaa  tällaisen  kantaja-aineen avulla intrapleuraaliseen tilaan pleuralehtien välisen liikkuvuuden parantamiseksi.

  1. 5. A. Gouldstone, R. E. Brown, J. P. Butler, and S. H. Loring, “Elastohydrodynamic separation of pleural surfaces during breathing,” Respir. Physiol. Neurbiol. https://doi.org/10.1016/S1569-9048(03)00138-1 137, 97 (2003); Google ScholarCrossref

    Elastohydrodynamic separation of pleural surfaces during breathing

    https://doi.org/10.1016/S1569-9048(03)00138-1Get rights and content
     Abstract
    To examine effects of lung motion on the separation of pleural surfaces during breathing, we modeled the pleural space in two dimensions as a thin layer of fluid separating a stationary elastic solid and a sliding flat solid surface. The undeformed elastic solid contained a series of bumps, to represent tissue surface features, introducing unevenness in fluid layer thickness. We computed the extent of deformation of the solid as a function of sliding velocity, solid elastic modulus, and bump geometry (wavelength and amplitude). For physiological values of the parameters, significant deformation occurs (i.e. bumps are ‘flattened’) promoting less variation in fluid thickness and decreased fluid shear stress. In addition, deformation is persistent; bumps of sufficient wavelength, once deformed, require a recovery time longer than a typical breath-to-breath interval to return near their undeformed configuration. These results suggest that in the pleural space during normal breathing, separation of pleural surfaces is promoted by the reciprocating sliding of lung and chest wall.
    S. H. Loring, R. E. Browna, A. Gouldstone, and J. P. Butler, “Lubrication regimes in mesothelial sliding,” J. Biomech. https://doi.org/10.1016/j.jbiomech.2004.10.012 38, 2390 (2005). , Google ScholarCrossref




 

Ninja Nerdin medisiinariohjeita COVID-10 taudista ja hoidosta

https://www.youtube.com/watch?v=PWzbArPgo-o

https://www.youtube.com/watch?v=rdoN_XsHWBI

torsdag 19 mars 2020

UUTISET 19.3. 2020 PubMed

News Releases from NIH

 

 

 

 

 

COVID-19 is an emerging, rapidly evolving situation.

Get the latest public health information from CDC: https://www.coronavirus.gov
Get the latest research information from NIH: https://www.nih.gov/coronavirus






...

UUTISET 19.3.2020 PubMed

https://www.nih.gov/health-information/coronavirus

Resources from NIH

LAUSE: IFN gamma 4 omaa antivirusvaikutusta koronavirusta vastaan

IFN‐λ4 has been shown to have the antiviral activity against hepatitis C virus (HCV), coronaviruses and West Nile virus.15, 16 A

(Sivumennen sanoen:  olenn pohtinut mistähän molekyylistä COVID ottaa jakson PRRA.
löydän nyt yhden ja se on interferonista
 joka on joillain maailman ihmisilla myös  koronavirusta vastaan antiviraali.
 Kaikilla maailman tätä IFNlamda4 inerferonia ei muodostu. 
ORIGIN      
        1 mrpsvwaava aglwvlctvi aaaprrclls hyrsleprtl aaakalrdry eeealswgqr
       61 ncsfrprrdp prpsscarlr hvargiadaq avlsglhrse llpgagpile llaaagrdva
      121 aclelarpgs srkvpgaqkr rhkprradsp rcrkasvvfn llrlltwelr laahsgpcl

COVID on ottanut insertion - PRRA-  tuohon kohtaan missä se tekee biosynteesinä  S1/S2  pilkkoutuman  Siinä on tullainen juuri  insertio. -prra-   sivumennen sanoen, jonka kaltainen löytyy intereronista joka voisi tunnistaa  tuon viruksen.  Sattumalöytö vain. Muistiin)


Abstract

The recently discovered IFN‐λ4 has been found to have antiviral activity against several viruses. However, it's unknown whether IFN‐λ4 can inhibit HIV infection. Here, we show that IFN‐λ4 could suppress HIV infection of macrophages. This IFN‐λ4‐mediated HIV inhibition was compromised by the antibodies against IFN‐λ receptor complex, IFN‐λR1/IL‐10R2. IFN‐λ4 enhanced the phosphorylation of STAT1, and induced antiviral interferon‐stimulated genes. These findings indicated that IFN‐λ4 can inhibit HIV via JAK/STAT signalling pathway.

 ..
 IFNL4 genome contains a dinucleotide variant, IFNL4‐ΔG/TT (rs368234815, originally designated as ss469415590) in exon 1 of IFNL4, upstream of IFN‐λ3 on chromosome 19q13.13. The IFNL4‐ΔG allele generates a functional IFN‐λ4 protein p179 (179 aa) by introducing a frameshift mutation that enables transcription, and the homozygous TT genotype creates a premature stop codon and thus knockouts this gene. IFN‐λ4 expresses in a small fraction of Asian and about half of European populations, but in most of Africans.4 Genetic studies have demonstrated that IFNL4‐TT allele has a strong positive correlation with HCV clearance, treatment outcome of HCV infection, and innate resistance to HIV infection, on the contrary, IFNL4‐ΔG allele is associated with the impairment of HCV clearance, and unfavourable clinical and immunological status in HIV/HCV co‐infected subjects.4-6 But there was also evidence supported that IFNL4 genotype is not associated with the antiviral interferon‐stimulated genes (ISGs) expression and HIV load in chronic HIV infection.7