Leta i den här bloggen

torsdag 25 juni 2020

Lisää artikkeleita ja viitteitä SARS-2 Spike glykosylaatioista

https://www.acrobiosystems.com/A1117-The-Art-of-glycosylation-of-SARS-CoV-2-S-Protein.html

3.  Deducing the N- and O- glycosylation profile of the spike protein of novel coronavirus SARS-CoV-2[3]


Azadi’s team from the University of Georgia published their work on bioRxiv. They digested the recombinant SARS-CoV-2 subunit S1 and S2 expressed in HEK293 cells into the glycopeptides. After that, high resolution LC-MS/MS was used to analyze these glycopeptides. In this way, they identified partial N-glycan occupancy on 17 out of 22 N-glycosylation sites with a combination of high mannose and complex type, but no hybrid-type glycans (Figure 5). Interestingly, they observed two unexpected O-glycosylation modifications on the receptor binding domain (RBD) of spike protein subunit S1. Even though O-glycosylation has been predicted on the spike protein of SARS-Cov-2, this is the first report of the site of O-glycosylation and identity of the O-glycans attached on the subunit S1. 
https://www.acrobiosystems.com/images/upload/20200414/1586865449960750.png
Reference: 
1. Yasunori Watanabe et al. Site-specific analysis of the SARS-CoV-2 glycan shield. bioRxiv preprint doi: https://doi.org/10.1101/2020.03.26.010322
2. Yong Zhang et al. Site-specific N-glycosylation Characterization of Recombinant SARS-CoV-2 Spike Proteins using High-Resolution Mass Spectrometry. bioRxiv preprint doi: https://doi.org/10.1101/2020.03.28.013276.  
3. Asif Shajahan et al. Deducing the N- and O- glycosylation profile of the spike protein of novel coronavirus SARS-CoV-2. bioRxiv preprint doi: https://doi.org/10.1101/2020.04.01.020966.
4. Dora Pinto et al. Structural and functional analysis of a potent sarbecovirus neutralizing antibody. bioRxiv preprint doi: https://doi.org/10.1101/2020.04.07.023903.
5. Oliver C. Grant et al. 3D Models of glycosylated SARS-CoV-2 spike protein suggest challenges and opportunities for vaccine development. bioRxiv preprint doi: http://biorxiv.org/cgi/content/short/2020.04.07.030445.
6. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/
7. Walls et al., Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein, Cell (2020).
8. Walls, A.C. et al. Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy. Nat. Struct. Mol. Biol. 23, 899–905. (2016).
9. Walls, A.C. et al. Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion. Proc. Natl. Acad. Sci. USA 114, 11157–11162. (2017).

ACROBiosystems has developed various SARS-CoV-2 proteins based on their HEK293 protein expression platform. The state of their mammalian cell expressed recombinant proteins is closer to that of the protein in human including the glycosylation level.

Inga kommentarer:

Skicka en kommentar