EFR- kohdan deltetiosubstituutiot ovat DELTAN merkkejä: Sekvenssi: EFR( 156, 157, 158).
Seuraava omikronin muutama kohta on sekvenssissä LGVYY ( 141,142, 143, 144, 145).
https://www.frontiersin.org/articles/10.3389/fimmu.2021.751778/full
Tässä artikkelissa (20.11.2021) kuvataan Deltavariantin tyyppimutaatioita
REVIEW article
The Global Epidemic of the SARS-CoV-2 Delta Variant, Key Spike Mutations and Immune Escape- National Clinical Research Center for Child Health, National Children’s Regional Medical Center, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
During the COVID-19 pandemic, SARS-CoV-2 variants have emerged and spread worldwide. The Delta (B.1.617.2) variant was first reported in India in October 2020 and was classified as a “variant of concern (VOC)” by the WHO on 11 May, 2021. Compared to the wild-type strain, several studies have shown that the Delta variant is more transmissible and has higher viral loads in infected samples. COVID-19 patients infected with the Delta variant have a higher risk of hospitalization, intensive care unit (ICU) admission, and mortality. The Delta variant is becoming the dominant strain in many countries around the world. This review summarizes and analyses the biological characteristics of key amino acid mutations, the epidemic characteristics, and the immune escape of the Delta variant. We hope to provide scientific reference for the monitoring and prevention measures of the SARS-CoV-2 Delta variant and the development strategy of a second-generation vaccine.
1 Introduction
Over the last two decades, SARS -CoV-2 has been the third coronavirus known to cause severe acute respiratory disease in humans, following SARS-CoV in 2003 and MERS-CoV in 2012 (1–3). Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a deleterious impact on health services and the global economy (4–6). As of 8 October 2021, COVID-19 has spread rapidly to more than 200 countries, and there have been 236,599,025 confirmed cases of COVID-19, including 4,831,486 deaths (www.who.int).
At the end of January 2020, the D614G mutation, which turns aspartic acid (Asp) into glycine (Gly) at site 614 of the spike protein, was first discovered in the UK and quickly became the dominant epidemic strain in the world, attracting widespread attention (7, 8). The established nomenclature systems for naming and tracking SARS-CoV-2 genetic lineages by Nextstrain, GISAID (https://www.gisaid.org/), and Pango are currently in use by scientists. The SARS-CoV-2 variants were classified as “variant of concern (VOCs)” and “Variant of Interest, VOI)” by the WHO. At present, Alpha B.1.1.7 (known as 20I/501Y.V1, VOC 202012/01) (9), Beta B.1.351 (known as 501Y.V2) (10), Gamma P.1 (known as 501Y.V3) (11) and Delta B.1.617.2 (known as 478K.V1) (12) are defined as “variants of concern (VOCs)” by the WHO. Several studies have indicated that the Delta variant has higher transmissibility (13–15) and immune evasion than the early original virus strain and the other three VOCs. COVID-19 patients infected with Delta have a higher risk of hospitalization, ICU admission, and mortality (16–18). The Delta is becoming a prominent global strain globally, which has brought new challenges to the prevention and control of the COVID-19 pandemic.
1.1 The Biological Characteristics of Key Amino Acid Mutations in the Spike Protein of the SARS-CoV-2 Delta Variant
SARS-CoV-2 invades host cells by binding the spike protein to angiotensin-converting enzyme-2 (ACE2) (19–21). The SARS‐CoV‐2 spike protein is cleaved by furin into the S1 subunit and S2 subunit. The S1 subunit consists of an N-terminal domain (NTD) and a receptor-binding domain (RBD) and is responsible for binding to the host-cell ACE2 receptor. In comparison, the S2 subunit includes the trimeric core of the protein and is responsible for membrane fusion. The spike protein is the dominant neutralization target of monoclonal antibodies (mAbs), convalescent plasma, and vaccines (22–24). Therefore, mutations in the S protein affect the transmissibility, pathogenicity, and immune escape of SARS-CoV-2 variants. The Delta variant has accumulated nine amino acid mutations (T19R, G142D, FR156⁃157del, R158G, L452R, T478K, D614G, P681R, D950N) in the spike protein (25).
1.1.1 L452R ( Finnish comment: Tätä DELTA-tunnusta ei ole omikronilla!)
The L452R mutation is located in the receptor-binding motif (RBM) region in the RBD region, containing residues that bind to ACE2 (26–28). Analysis of the SARS-CoV-2 spike protein revealed that the L452 residue does not directly contact the ACE2 receptor (29). Instead, L452, together with F490 and L492, forms a hydrophobic patch on the surface of the spike RBD. The L452R mutation may cause structural changes in this region that stabilize the interaction between the spike protein and the host cell’s ACE2 receptor, leading to increasing infectivity (26, 30). Deng X et al. observed that the entry efficiency into host cells of stable pseudoviruses carrying the L452R mutation was 6.7-22.5-fold higher in 293T cells and 5.8-14.7-fold higher in human airway lung organoids (HAOs) compared to D614G alone (293T cells and HAOs can stably express ACE2) (26). These results indicated that L452R mutation could increase the binding affinity of the spike protein to the host-cell receptor ACE2.
Wilhelm A et al. (31) found that authentic SARS-CoV-2 variants harboring L452R had reduced susceptibility to convalescent and vaccine-elicited sera and mAbs. Compared to B.1, the neutralization activity of convalescent sera against Delta was reduced by 5.33-fold. The neutralization activity of sera elicited by the mRNA vaccine against Delta was 2-fold weaker than B.1. In contrast to Kappa, authentic SARS-CoV-2 variants harboring L452R have a substantial resistance against imdevimab and bamlanivimab. Even at high concentrations, imdevimab was not effective against Delta, indicating high resistance. However, neutralization of Delta was moderately reduced with the clinically approved combination of casirivimab/imdevimab (31). In addition, another pseudovirus simulation showed that the L452R mutation could enhance the immune escape ability of the virus against convalescent plasma (32) and monoclonal antibodies (SARS2-01, SARS2-02, LY-CoV555, SARS2-32, X593, P2B2F6) (33).
1.1.2 T478K ((Finnish comment: Tämä BETA- tunnus on omikronvarianteilla BA.1, BA.1.1 ja BA.2, mutta ei BA.3:ssa)
Compared with the other two B.1.617 lineages (B.1.617.1 and B.1.617.3), Delta (B.1.617.2) does not have the E484Q mutation but has a unique T478K mutation (25). An in silico molecular dynamics study on the protein structure of spike has predicted that the T478K mutation, substituting a non‐charged amino acid (threonine) with a positive one (lysine), may significantly alter the electrostatic surface of the protein and increase steric hindrance of the spike protein. These factors could enhance the binding affinity of RBD to ACE2 and enhance the ability of the virus to invade the host cell (34). Similarly, in vitro cell culture studies have shown that the Delta variant carrying T478K is more likely to undergo secondary mutation in a low titer antibody environment, leading to the failure of host antibody immunization (34).
1.1.3 P681R ( Finnish comment: Tätä DELTA-tunnsuta ei ole tässä muodossa omikronissa. Omikronilla on P681H, kuten ALFA, THETA ja MU-varianteillakin)
Interestingly, the P681R mutation in the S protein of the B.1.617 lineage is unique and newly identified in VOCs. The P681R mutation is located at the furin cleavage site (FCS; residues RRAR positioned between 682-5), and the cleavage of this region is the key to host cell entry (35). Several analyses have found that the P681R mutation affects viral replication dynamics and potentially determines the B.1.617 variants (36–38). Pseudoviruses carrying the P681R mutation showed that this mutation significantly increased the level of the cleaved S2 subunit and the level of the cleaved S2 subunit of the D614G/P681R mutation was significantly higher than that of D614G alone. In vitro, cell culture experiments revealed that the size of floating syncytia in the D614G/P681R mutant-infected culture was significantly larger than that in the D614G mutant-infected cell culture (39). These data suggested that the P681R mutation facilitates furin-mediated cleavage of the SARS-CoV-2 S protein, accelerates viral fusion, and promotes cell-cell infection.
In addition, the neutralization analyses of pseudoviruses showed that three monoclonal antibodies against RBD had 1.5-fold (1.2 ~2.65) decreased neutralization activity by against pseudoviruses with the D614G/P681R mutation. The neutralizing activity assay using the 19 sera elicited by the BNT162b2 vaccine (two doses) showed that pseudoviruses carrying the D614G/P681R mutation are significantly resistant to the vaccine-induced NAbs compared to the D614G pseudoviruses (39). These results suggested that the P681R mutation generated resistance to some mAbs and sera elicited by mRNA vaccines.
Stefano Pascarella et al. (40) reported that the surface electrostatic potential (EP) of the RBD of the spike protein is markedly increased. This is particularly noticeable in the Delta variant, which shows multiple replacements from neutral or negatively charged amino acids to positively charged amino acids. The EP in the spike protein of the Delta variant includes the uncharged and hydrophobic residue of Leu452 changing to the positively charged residue Arg and the neutral residue Thr changing to the positively charged Lys at position 478. The positive electrostatic potential can favor the interaction between the B.1.617.2+ RBD and the negatively charged ACE2, increasing the binding affinity of RBD to ACE2 receptor, thus conferring a potential increase in the virus transmission.
The above studies suggested that L452R, T478K, and P681R are the three key mutations of the SARS-CoV-2 Delta variant. These mutations increased transmissibility and generated immune escape of the Delta variant, as shown in Figure 1.
Inga kommentarer:
Skicka en kommentar