Tämän EFR alueen substituutioilla tai deletioilla on merkitystä viruksen infektiossa. Parent- delta substituoi E156G ja deletoi F ja R ( 157, 158). Jokin virus substituoi taas R158G ja deletoi E ja F (156, 157). Yleensä vaikutaa läpi AY-linjojen olevan E157G ja deletio FR157/158. Tämä on deltoille tyypillistä mutaatiokohtaa jatehokasta konservoitumista työkaluna.. On havaittu muutama AY-variantti, joiden replikoitumistahti ja kasvutahti on suurempi kuin parent-deltan. Näitä on AY43, AY120 ja jokin AY9? linjainen. Vertailtaessa niiden rakenteita, eroa parent-deltaan on vain pari kappaletta . Toinen on se, että nopeat eivät substituoi deltatunnuksella G142D ja käyttävät mielellään T95I substituutiota. Lisäksi ne tekevät pikkudeleetion M-proteiiniin, jollaista deleetiota ei ole parent-deltassa. Delta-variantit tehostuessaan ikäänkuin minimalisoivat muutoksiaan, mikä onkin omikronin suhteen suurinta eroa mielestäni, se kun taas on oikein superheppu tuossa rönsyilevässä substituutioinnossaan ja muutteluissaan, mutta moni muutos pielii tyypilliset entiset VOC-mutaatiopisteet. Ehkä rakennetta vahvistavat glykosylaatiot ja sinkkisidokset ja -S-S- sidokset ovat olleet estämässä ja siksi se ilmeisesti tulee heikentämään glykosylaatioita ja sinkkisidosten muodostumiskohtia taja muuntelee sekundääri ja tertiäärimuotoaan . Sinkkisidoksia voi muodostaa C- motiivit ja niihin voi kuulua H ja D aminohappojakin. pinnimäisissä kohdissa. C- proteiineja tosin harvemmin näyttää muuttuvan pois tai tulevan uusia. Mutta D ja Y ja H vaihtelevat. Pitää ainakin pitää silmällä C, H ja D muutoksia sinkin suhteen. Virus tarvitsee sinkkiä myös virionin pakkaukseen. intravirioniseen tilaan. vVirus stabiloi itseään ja kohtdeproteiinejaan luhistaa. Huom tässä on minun omia ajatuksiani eikä niin mitään artikkelin suomennosta. Virus on sinkkiproteiiniensa avulla tehokas ja pysyy hyvin koossa. Kuten ihminenkin ja ihmisgenomi, joten suosittelen vain sinkkilisää näinä päivinä kun virukset kehräävät rakenteita virioneilleen ihmiskunnan kehoissa. D-vitamiininkin annosta olen nostanut, samoin B-vitamiineja, C-vitamiinin annosta monipuolisen ravinnon ohella.
EFR- kohdan deltetiosubstituutiot ovat DELTAN merkkejä: Sekvenssi: EFR( 156, 157, 158).
Omikron puolestaan omaa useita deletiosubstituutiotaipumuksia:
Sekvenssissä LPPA (24, 25, 26, 27)
Linja BA.2 tekee tähän muutokset: L24S, deleetio 25/27(-PPA).
LPPA-kohdasta jää jäljelle: S.
Toinen altis kohta on sekvenssi ATHV (67, 68, 69, 70).
Tässä omikron BA.1, BA.1.1 ja BA.3 tekevät substituution A67V ja deleetion 69/70 (-HV).
ATHV-kohdasta jää jäljelle: VT.
(Myös Sars-2 ETA-variantti teki substituution A67V. Sars-2 ALFA variantti taas teki deleetiota 67/70.(-HV).
Seuraava omikronin muutama kohta on sekvenssissä LGVYY ( 141,142, 143, 144, 145).
BA.1, BA.1.1 ja BA2 tekevät substituution G142D. BA.3 ei tehne tätä substituutiota.
BA.1 ja BA.1.1 tekevät deleetiot -VYY (del 143/145).
(Sars-2 THETA teki deleetion -LGV (del 141/143).
(Sars-2 KAPPA teki substituution G142D. ja tätä esiintyy joissain delta-varianteissa AY myös)
(Sars-2 ALFA teki deletion -YY (del 144/145).
´(sars-2 MU variantti taas substituoi tässä Y144S ja Y145N).
(Eräs deltavariantti AY.42 teki myös tuohon alueeseen substituution Y145H).
Seuraava mutaatioalue, deleetio-substituutio ja insertio kohta on alueella ( tässä otan vähän laajemman pätkän):
INLVRDLPQGFSA ( 210, 211, 212, 213, 214, 215,216, 217, 218,219,220,221,222) :
Omicron modifioi tätä aluetta. Välillä julkaistiin deleetiomuoto ennenkuin listoihin kirjoitettiin substituutiomuoto N211I. Se esiintyy BA.1, BA.1.1. ja BA.3 varianteissa.
Niissä ilmaistaan olevan jokin deleetio 212/212 ja mahdollinen insertio (EPE) on havaittu kohtaan 215. .
Sensijaan BA.2 omikronvariantti ei omaa ehkä samanlaista konformaatiota, sillä se substituoi alueesta kohdan V213G. En tiedä jos sillä on sitä EPE-insertiota. En ole varma olisiko se mahdollinen.
Itseasiassa en oikein tiedä miltä tuo alue näyttää sekvenssinä näillä eri omikron varianteilla kokonaisuudessaan. Olen katsonut miltä tämä ryväs näyttää Sveitsin mallin Spike-rakenteessa. Niitä EPE-kulman ryväksiähän on trimeerissä kolme uloketta tosiaan kuin rypälekimppuja ulkonevana, jotta periaatteessa kaikki insertiot mahtuvat hyvin tuohon ulkonevaan lenkiin ja onhan siellä matematiikan mukaan jaksossa paikkaakin. EPE tarkoittaa kolmea aminohappoa glutamiinihappo (E)- proliini(P)- glutamiinihappo (E).
BA,2 teki aivan peptidin alkupäässä ne kolme deletiota, joita muut BA-variantit eivät tehneet.
(sars-2 BETA-variantti substituoi D215G. samoin C.1.2 virus, jota tarkkaillaan. .
(VUM-joukkoon kuuluva Congo-variantti B.1.640 tekee substituution I210T).
Deltalinjan AY.22 substituoi Q218H.
Deltalinjan varianteissa on useassa A222V,
https://www.frontiersin.org/articles/10.3389/fimmu.2021.751778/full
Tässä artikkelissa (20.11.2021) kuvataan Deltavariantin tyyppimutaatioita
REVIEW article
The Global Epidemic of the SARS-CoV-2 Delta Variant, Key Spike Mutations and Immune Escape
- National
Clinical Research Center for Child Health, National Children’s Regional
Medical Center, The Children’s Hospital, Zhejiang University School of
Medicine, Hangzhou, China
During the COVID-19 pandemic,
SARS-CoV-2 variants have emerged and spread worldwide. The Delta
(B.1.617.2) variant was first reported in India in October 2020 and was
classified as a “variant of concern (VOC)” by the WHO on 11 May, 2021.
Compared to the wild-type strain, several studies have shown that the
Delta variant is more transmissible and has higher viral loads in
infected samples. COVID-19 patients infected with the Delta variant have
a higher risk of hospitalization, intensive care unit (ICU) admission,
and mortality. The Delta variant is becoming the dominant strain in many
countries around the world. This review summarizes and analyses the
biological characteristics of key amino acid mutations, the epidemic
characteristics, and the immune escape of the Delta variant. We hope to
provide scientific reference for the monitoring and prevention measures
of the SARS-CoV-2 Delta variant and the development strategy of a
second-generation vaccine.
1 Introduction
Over
the last two decades, SARS -CoV-2 has been the third coronavirus known
to cause severe acute respiratory disease in humans, following SARS-CoV
in 2003 and MERS-CoV in 2012 (1–3).
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) has a deleterious impact on health
services and the global economy (4–6).
As of 8 October 2021, COVID-19 has spread rapidly to more than 200
countries, and there have been 236,599,025 confirmed cases of COVID-19,
including 4,831,486 deaths (www.who.int).
At
the end of January 2020, the D614G mutation, which turns aspartic acid
(Asp) into glycine (Gly) at site 614 of the spike protein, was first
discovered in the UK and quickly became the dominant epidemic strain in
the world, attracting widespread attention (7, 8). The established nomenclature systems for naming and tracking SARS-CoV-2 genetic lineages by Nextstrain, GISAID (https://www.gisaid.org/),
and Pango are currently in use by scientists. The SARS-CoV-2 variants
were classified as “variant of concern (VOCs)” and “Variant of Interest,
VOI)” by the WHO. At present, Alpha B.1.1.7 (known as 20I/501Y.V1, VOC
202012/01) (9), Beta B.1.351 (known as 501Y.V2) (10), Gamma P.1 (known as 501Y.V3) (11) and Delta B.1.617.2 (known as 478K.V1) (12)
are defined as “variants of concern (VOCs)” by the WHO. Several studies
have indicated that the Delta variant has higher transmissibility (13–15)
and immune evasion than the early original virus strain and the other
three VOCs. COVID-19 patients infected with Delta have a higher risk of
hospitalization, ICU admission, and mortality (16–18).
The Delta is becoming a prominent global strain globally, which has
brought new challenges to the prevention and control of the COVID-19
pandemic.
1.1 The Biological Characteristics of Key Amino Acid Mutations in the Spike Protein of the SARS-CoV-2 Delta Variant
SARS-CoV-2 invades host cells by binding the spike protein to angiotensin-converting enzyme-2 (ACE2) (19–21).
The SARS‐CoV‐2 spike protein is cleaved by furin into the S1 subunit
and S2 subunit. The S1 subunit consists of an N-terminal domain (NTD)
and a receptor-binding domain (RBD) and is responsible for binding to
the host-cell ACE2 receptor. In comparison, the S2 subunit includes the
trimeric core of the protein and is responsible for membrane fusion. The
spike protein is the dominant neutralization target of monoclonal
antibodies (mAbs), convalescent plasma, and vaccines (22–24).
Therefore, mutations in the S protein affect the transmissibility,
pathogenicity, and immune escape of SARS-CoV-2 variants. The Delta
variant has accumulated nine amino acid mutations (T19R, G142D,
FR156⁃157del, R158G, L452R, T478K, D614G, P681R, D950N) in the spike
protein (25).
1.1.1 L452R ( Finnish comment: Tätä DELTA-tunnusta ei ole omikronilla!)
The
L452R mutation is located in the receptor-binding motif (RBM) region in
the RBD region, containing residues that bind to ACE2 (26–28). Analysis of the SARS-CoV-2 spike protein revealed that the L452 residue does not directly contact the ACE2 receptor (29).
Instead, L452, together with F490 and L492, forms a hydrophobic patch
on the surface of the spike RBD. The L452R mutation may cause structural
changes in this region that stabilize the interaction between the spike
protein and the host cell’s ACE2 receptor, leading to increasing
infectivity (26, 30).
Deng X et al. observed that the entry efficiency into host cells of
stable pseudoviruses carrying the L452R mutation was 6.7-22.5-fold
higher in 293T cells and 5.8-14.7-fold higher in human airway lung
organoids (HAOs) compared to D614G alone (293T cells and HAOs can stably
express ACE2) (26).
These results indicated that L452R mutation could increase the binding
affinity of the spike protein to the host-cell receptor ACE2.
Wilhelm A et al. (31)
found that authentic SARS-CoV-2 variants harboring L452R had reduced
susceptibility to convalescent and vaccine-elicited sera and mAbs.
Compared to B.1, the neutralization activity of convalescent sera
against Delta was reduced by 5.33-fold. The neutralization activity of
sera elicited by the mRNA vaccine against Delta was 2-fold weaker than
B.1. In contrast to Kappa, authentic SARS-CoV-2 variants harboring L452R
have a substantial resistance against imdevimab and bamlanivimab. Even
at high concentrations, imdevimab was not effective against Delta,
indicating high resistance. However, neutralization of Delta was
moderately reduced with the clinically approved combination of
casirivimab/imdevimab (31).
In addition, another pseudovirus simulation showed that the L452R
mutation could enhance the immune escape ability of the virus against
convalescent plasma (32) and monoclonal antibodies (SARS2-01, SARS2-02, LY-CoV555, SARS2-32, X593, P2B2F6) (33).
1.1.2 T478K ((Finnish comment: Tämä BETA- tunnus on omikronvarianteilla BA.1, BA.1.1 ja BA.2, mutta ei BA.3:ssa)
Compared
with the other two B.1.617 lineages (B.1.617.1 and B.1.617.3), Delta
(B.1.617.2) does not have the E484Q mutation but has a unique T478K
mutation (25).
An in silico molecular dynamics study on the protein structure of spike
has predicted that the T478K mutation, substituting a non‐charged amino
acid (threonine) with a positive one (lysine), may significantly alter
the electrostatic surface of the protein and increase steric hindrance
of the spike protein. These factors could enhance the binding affinity
of RBD to ACE2 and enhance the ability of the virus to invade the host
cell (34). Similarly, in vitro
cell culture studies have shown that the Delta variant carrying T478K
is more likely to undergo secondary mutation in a low titer antibody
environment, leading to the failure of host antibody immunization (34).
1.1.3 P681R ( Finnish comment: Tätä DELTA-tunnsuta ei ole tässä muodossa omikronissa. Omikronilla on P681H, kuten ALFA, THETA ja MU-varianteillakin)
Interestingly,
the P681R mutation in the S protein of the B.1.617 lineage is unique
and newly identified in VOCs. The P681R mutation is located at the furin
cleavage site (FCS; residues RRAR positioned between 682-5), and the
cleavage of this region is the key to host cell entry (35).
Several analyses have found that the P681R mutation affects viral
replication dynamics and potentially determines the B.1.617 variants (36–38).
Pseudoviruses carrying the P681R mutation showed that this mutation
significantly increased the level of the cleaved S2 subunit and the
level of the cleaved S2 subunit of the D614G/P681R mutation was
significantly higher than that of D614G alone. In vitro, cell
culture experiments revealed that the size of floating syncytia in the
D614G/P681R mutant-infected culture was significantly larger than that
in the D614G mutant-infected cell culture (39).
These data suggested that the P681R mutation facilitates furin-mediated
cleavage of the SARS-CoV-2 S protein, accelerates viral fusion, and
promotes cell-cell infection.
In addition, the
neutralization analyses of pseudoviruses showed that three monoclonal
antibodies against RBD had 1.5-fold (1.2 ~2.65) decreased neutralization
activity by against pseudoviruses with the D614G/P681R mutation. The
neutralizing activity assay using the 19 sera elicited by the BNT162b2
vaccine (two doses) showed that pseudoviruses carrying the D614G/P681R
mutation are significantly resistant to the vaccine-induced NAbs
compared to the D614G pseudoviruses (39). These results suggested that the P681R mutation generated resistance to some mAbs and sera elicited by mRNA vaccines.
Stefano Pascarella et al. (40)
reported that the surface electrostatic potential (EP) of the RBD of
the spike protein is markedly increased. This is particularly noticeable
in the Delta variant, which shows multiple replacements from neutral or
negatively charged amino acids to positively charged amino acids. The
EP in the spike protein of the Delta variant includes the uncharged and
hydrophobic residue of Leu452 changing to the positively charged residue
Arg and the neutral residue Thr changing to the positively charged Lys
at position 478. The positive electrostatic potential can favor the
interaction between the B.1.617.2+ RBD and the negatively charged ACE2,
increasing the binding affinity of RBD to ACE2 receptor, thus conferring
a potential increase in the virus transmission.
The
above studies suggested that L452R, T478K, and P681R are the three key
mutations of the SARS-CoV-2 Delta variant. These mutations increased
transmissibility and generated immune escape of the Delta variant, as
shown in Figure 1.